Cross Sections for K-shell X-ray Production by Hydrogen and Helium Ions in Elements from Beryllium to Uranium

G. Lapicki

Department of Physics, East Carolina University, Greenville, North Carolina 27858

Received November 19, 1986; revised manuscript received August 8, 1988

Experimental cross sections for K-shell x-ray production by hydrogen and helium ions $(Z_1 = 1,2)$ in target atoms from beryllium to uranium $(Z_2 = 4-92)$ are tabulated as compiled (7418 cross sections) from the literature (161 references were found) with the search for the data terminated in January 1988. These cross sections are compared with predictions of the first Born approximation and ECPSSR theory for inner-shell ionization. The ECPSSR accounts for the energy loss (E) and Coulomb deflection (C) of the projectile ion as well as for the perturbed stationary state (PSS) and relativistic (R) nature of the target's inner-shell electron. While the first Born approximation generally overestimates the data by orders of magnitude, the ECPSSR theory is confirmed to be, on the average, in agreement with the experiment to within 10%-20%. For light and heavy target atoms, however, systematic and opposite deviations are found in the low projectile-velocity regime. These deviations are associated with the influence of multiple outer-shell ionizations on the fluorescence yields of light elements, particularly in ionization by helium ions, and with the inaccuracy of the ECPSSR theory in the reproduction of relativistic calculations for ionization of heavy elements. The remaining discrepancies at moderate projectile velocities are prima facie attributed to inadequacies of a screened hydrogenic description for the K-shell electron.

Key words: K-shell x-ray production cross sections; K-shell ionization; Born approximation; ECPSSR theory; H ions; He ions.

CONTENTS

1.	Introduction	112	3.3. Comparison of the experimental and	
2.	Experimental data base	113	ECPSSR cross sections	118
	2.1. Search procedures	113	4. Conclusions	121
	2.2. Summary of data base	113	5. Acknowledgments	121
	2.2. a. Compiled K-shell x-ray production cross		6. References	211
	sections	113	6.1. Text references	211
	2.2. b. Units	113	6.2. References to cross-section data compiled in	
	2.3. Growth and decline in annual publication of		Tables 2-5	212
	datadata	114	6.3. Author index for the data base references in	
3.	Data analysis	114	Sec. 6.2	215
	3.1. Ionization cross sections	114	List of Tables	
	x-ray production cross section	114	1. Distribution by target element of K-shell x-ray production cross sections compiled from the literature	122
	ECPSSR theories	115	2. K-shell x-ray production by protons in target elements from beryllium to uranium	124
	sis of the data	115	3. K-shell x-ray production by deuterons in target	
	3.2. a. Review and general scaling of the		elements from beryllium to gold	170
	ECPSSR	116	4. K-shell x-ray production by ³ He in target ele-	
	3.2. b. Current status, alternatives, advantages		ments from aluminum to silver	177
	and shortcomings of the ECPSSR	116	5. K-shell x-ray production by ⁴ He in target ele-	
Th	1989 by the U. S. Secretary of Commerce on behalf of the United is copyright is assigned to the American Institute of Physics a nerican Chemical Society. Reprints available from ACS; see Re	nd the	ments from beryllium to uranium	181 202
Ļľ	st at back of issue.		ioi ouoii tai fot oioiiioiit	202

7.	Contribution of electron capture to ionization according to the ECPSSR theory	210	5. Averaged ratios of experimental cross sections to the first Born calculations for protons	118
	,		6. Averaged ratios of experimental cross sections to	118
			the ECPSSR predictions for protons	110
	List of Figures		the ECPSSR predictions for deuterons	119
1.	Histogram of data for K-shell x-ray production		8. Averaged ratios of experimental cross sections to	
	by H and He ions	114	the ECPSSR predictions for ³ He ions	119
2.	K-shell x-ray production in nickel by protons as		9. Averaged ratios of experimental cross sections to	
	a function of the projectile's velocity scaled by		the ECPSSR predictions for ⁴ He ions	119
	the electron velocity in K-shell orbit of the target	114	10. Same as Fig. 6 but versus the variable ξ_K^R/ζ_K	
3.	Ratios of experimental cross sections to the first		according to which the ECPSSR ionization cross	
	Born approximation for protons incident on		sections scale in the slow collision regime	120
	nickel	116	11. Same as Fig. 9 but versus the variable ξ_K^R/ζ_K	
4.	Ratios of experimental cross sections to the		according to which the ECPSSR ionization cross	
	ECPSSR for protons incident on nickel	116	sections scale in the slow collision regime	120

1. Introduction

Fifteen years ago, Rutledge and Watson¹ originated extensive tabulations of inner-shell cross sections by ionic projectiles in target atoms which cover most of the periodic table. Their compilation was restricted to K-shell ionization by H and He ions and reported some $600 \, \text{x-ray}$ production cross sections in 1973. In a 1978 sequel to it, Gardner and Gray² extended this compilation to $\sim 1200 \, \text{x-ray}$ production cross sections by H and He ions. This extension covered K-shell ionization cross sections by heavier ions than helium as well; compilations of L-shell ionization data also exist.³

One could hence speculate that the number of K-shell x-ray production cross sections by H and He as reported in the literature doubled in a five-year period. To an extent that a constant fraction of all publications on inner-shell ionization phenomena contains such data, we could confirm this speculation. A histogram of publications cited in a 1975 thesis⁴ on inner-shell ionization showed an exponential increase in these articles per annum since 1960; the growth rate was constant and indeed such that the number of publications per year has doubled every half of a decade.

Continued updates of these data, as carried almost single-handedly by Paul and co-workers⁵⁻¹⁴ since 1978, appear also to be characterized by a rapid increase in their amount. In his 1984 analysis, ⁸ Paul uses some 3200 cross sections from the literature for protons alone. In an attempt to unravel systematic trends in such a mass of experimantal data, Paul et al.⁵⁻¹⁴ normalize the data to theoretical predictions of the ECPSSR theory for direct K-shell ionization.¹⁵ The ECPSSR theory for both direct ionization.¹⁵ and electron capture¹⁶ accounts for the energy loss (E) and Coulomb deflection (C) of the projectile, and for the perturbed stationary state (PSS) and relativistic (R) changes in the description of the inner-shell electron that undergoes ionization. In our original analysis, ¹⁵ we scaled ~2600 K-shell x-ray production cross sections to the results of this theory. The devia-

tions of experiment from the ECPSSR theory¹⁵ were found to be within 10% once all the data were considered equally and averaged in the preselected equal intervals of the effective projectile energy-loss variable. Such discrepancies, being comparable to experimental uncertainties, appeared to be acceptable. Analyses⁵⁻¹⁴ analogous to the analysis of Ref. 15 subsequently revealed, however, that the ECPSSR theory systematically overestimates the data in the slow collision regime after the proton measurements from 21 out of 77 references were rejected. Similar deviations were observed for deuteron and helium data8 after the data from 22 out of 55 references were discarded according to the adopted rejection criterion. 6,7 This finding was confirmed with an updated 1986 compilation¹² that contains almost 4000 proton cross sections from 101 references and nearly 1800 alpha particle cross sections from 47 references.

Previous authors either reported compiled cross sections in a tabular form without theoretical scrutiny 1-3 or analyzed them, without listing of the data, through graphical comparisons with the predictions of theories.⁵⁻¹⁴ In this work, both a compilation (Sec. 2 and Tables) and an analysis (Sec. 3 and Figs.) are given. Two motivating goals for the present article are: (i) the need for an update of the last tabular report of the data² because the number of available cross sections has multiplied sixfold since then, (ii) the desire for an evaluation of the ECPSSR theory vis-à-vis an expanded data base; this evaluation, being independent and methodologically slightly different than critical analyses by Paul et al., 5-15 might be of interest to those who choose to compare the ECPSSR theory with experiment. Also, brief comments that go beyond raw data presentation and their conventional evaluation in the framework of chosen theories are made; the data growth is a good indicator of the dynamic evolution in the field of inner-shell ionization. Such a discussion could offer a useful glimpse at the changing status of this field to those readers who may not be directly involved in it and might be even of vital interest to the researchers who are immersed in this field.

2. Experimental data base

2.1. Search procedures

All compiled cross sections were taken from the tables from referenced articles or privately communicated by authors of the article. When the tables and authors were not available, the data were read off graphs with the accuracy of two significant figures. All cross sections are reported in this work in a three-digit format even though occasionally original sources published them in larger formats. Uncertainties of the order of 10% in the modern day measurements of these cross sections restrict their significance to, at most, a three-digit accuracy. Errors, found in the original literature by Paul and Muhr, 12 were corrected prior to the accumulation of present data base. All compiled data were stored on disk files in the chronological order for easy updates. These files were spot checked against source papers for possible misprints in transfer to computer files; a few coauthors of source references have kindly provided this author with a check of his printout of their data. The last update of the data was made during the summer of 1988 with January 1988 terminating the data search.

2.2. Summary of data base

2.2.a. Compiled K-shell x-ray production cross sections

Table 1 gives a summary of the distribution of 7418 compiled cross sections with respect to the target atomic number Z_2 for each of the the projectiles (protons, deuterons, ³He, ⁴He) separately as well as, cumulatively, for all projectiles $(Z_1 = 1,2)$. It allows a global assessment of the availability of the data for a specific projectile-target combination as well as for a given target and all projectiles. In particular, this table identifies (by contrast with the bold print used for the \mathbb{Z}_2 targets that appear in the compilation) the 15 elements for which no data were found in the $4 \le Z_2 \le 92$ range and it singles out copper as the most often (9% of all data) used target for K-shell x-ray measurements by H and He ions. K-shell x-ray production cross sections induced by protons, deuterons, ³He, and ⁴He ions are compiled in Tables 2-5, respectively. They are listed with the increasing atomic number Z_2 of the target atom which is also identified by name. For each element, the data appear according to the chronological order of the reference of their origin and, for each reference, they are listed with the increasing energy¹⁷ of the projectile.

Tables 2-5 contain 7418 cross sections of which 63% are by protons, 26% by ⁴He, 7% by deuterons, and 4% by ³He. The data are from 161 references that are listed chrono-

logically in a separate reference section which lists these source references (see Sec. 6.2). A contact between the references and Table 1, which provides only a summary of the data base content, is made in Table 6. Table 1 shows a discribution of all compiled cross sections with respect to the projectile and target atoms. Table 6 presents this information by identifying the reference from which the data were obtained; the correlation of the number of reported cross sections for a given projectile-target system with the reference number serves a twofold purpose: (1) to exhibit the rate of growth in accumulation of the data with time since references are arranged chronologically and (2) to find all references pertaining to the given projectile-target combination. This overview of data distribution gives a quick perspective on the dynamics with which the data appear in the literature for a selected projectile-target combination. It offers a detailed look at the regions of the periodic table that remain almost uncharted to experimental studies of K x-ray production by light ions; references identify the researchers who pioneered investigations in these nearly tabula rasa regions.

This article ends with an author index (see Sec. 6.3), which is keyed to the reference numbers appearing in Tables 2-6 so that an easy reference exists to the names of all of those who reported the compiled data. The reference numbers which follow given names of particular authors place their research activity in a historical context since the references are ordered chronologically. Anyone interested in contributions of a particular author to the compiled data can trace them easily with the aid of Table 6.

2.2.b. Units

In Tables 2-5, each data set from a given reference consists of pairs: the energy of the projectile in MeV $(1.6\times10^{-13}\,\mathrm{J})$ and the experimental x-ray production cross section in barn (10⁻²⁸ m²). The conventional units of the accelerator-based physics are used to report the data in these Tables because such units are employed in the source literature (SI equivalents of these units are stated in the parentheses). Velocities of the projectile and of the target K-shell electron are calculated in terms of $v_0 = e^2/\hbar$, the Bohr velocity $(2.2 \times 10^6 \text{ m/s})$ of the electron in the ground state of the H atom. In this atomic unit of velocity, the target K-shell electrons orbit at $v_{2K} = Z_{2K}$ where $Z_{2K} = Z_2 - 0.3$ is the electric charge, in units of 1 because one is the magnitude of the electron charge in atomic units, of the target nucleus diminished by Slater's screening constant. In Figs. 3-11, the choice of units is immaterial because dimensionless ratios are plotted along each axis. The parameters that define ξ_K^R/ζ_K , the scaling variable of the ECPSSR theory, are dimensionless (See Sec. 3.2.a. and Figs. 10 and 11).

2.3. Growth and decline in annual publication of data

Figure 1 shows a histogram of the data compiled in this article: the annual number of cross sections published in a given year is shown. It appears that the rapid rate of growth of the 1960s and early 1970s rose to a maximum in the late 1970's. The annual rate at which the cross sections were reported in the current decade is on the decline. If this trend continues, the total cumulative number of cross sections is destined to reach a saturated value of some 10 000.

This forecast does not mean that the research on innershell ionization processes slides down toward its nadir; the annual number of publications in this field continues to double every five years. Rather it is the specialized area of innershell ionization research, as measured by the amount of new K-shell x-ray production cross sections by light ions, that shrinks. Experimental and theoretical interests shift now toward problems of inner-shell ionization in which Z_1/Z_2 , the ratio of projectile-to-target atomic numbers, approaches 1. Also, as investigations of the K shell in very asymmetric $(Z_1/Z_2 \leqslant 1)$ collisions become less fashionable, the current research on such collisions gives more prominence to studies of L- and M-shell ionizations.

3. Data analysis

No attempt is made here to report the experimental errors as stated in the original papers. Often estimates of such errors are not consistent, ranging from 5% to 35% amongst various experimental groups even though the experiments were performed apparently under similar conditions. Less often, but most shockingly, the data for the iden-

FIG. 1. Histogram of data for K-shell x-ray production by H and He ions (see Sec. 2.3). The vertical lines indicate the annual number of published cross sections as compiled in this work; the solid circles correspond to the cumulative number of these cross sections as they appeared up to a given year.

FIG. 2. K-shell x-ray production in nickel by protons as a function of the projectile's velocity scaled by the electron velocity in K-shell orbit of the target. Data are from Refs. 5, 20, 36, 47, 52, 55, 57, 69, 73, 76, 77, 84, 89, 94, 97, 108, 113, 114, 115, 120, 122, 132, 137, and 151 from the list of source references (see Sec. 6.2). The curves are based on the first Born (Refs. 20 and 21: dashed curve) and the ECPSSR (Refs. 15 and 16: solid curve) theories.

tical collision systems are found to differ by a significantly larger margin of error than the claimed experimental uncertainties would imply¹⁸; in rare instances such data disagree by even more than a factor of 2. Hence, although, justifiably due to constant improvements in data gathering techniques, 25% uncertainties are quoted in older references and 10% uncertainties are claimed in recent articles, we assign equal weights to all data at the outset of our analysis.

Figure 2 shows the cross sections for protons on nickel, one of the most often used materials in the K-shell x-ray production measurements. These cross sections increase by as much as nine orders of magnitude with the projectile energy, labeled at the top of the figure in MeV. They exhibit a general trend of all data in that the cross sections peak where the velocity of the projectile v_1 , matches approximately the orbital velocity of the K-shell electron in the target atom $v_{2K} = Z_{2K} = Z_2 - 0.3$.

3.1. Ionization cross sections

3.1.a. Conversion of ionization cross section to x-ray production cross section

Experimental x-ray production cross sections $\sigma_{KX}^{\text{Exper.}}$ can be compared with theoretical x-ray production cross sections σ_{KX} , after the ionization cross section σ_{K} is multiplied by the fluorescence yield ω_{K} , i.e., $\sigma_{KX} = \sigma_{K}\omega_{K}$. Throughout this work we use the single-vacancy fluorescence yields and employ for them the values as recommend-

ed by Krause¹⁹ and listed in Tables 2-5. Multiple ionizations increase ω_{κ} with the increasing Z_1/v_1 . They do this, however, insignificantly (less than a percent) in K-shell ionization of heavier elements by light (hydrogen, helium) ions, in which $Z_1/v_1 \cong (Z_1/Z_2)/(v_1/v_{2K})$ is small even at low projectile velocities. Only small fluorescence yields ($\omega_K < 0.02$ for $Z_2 < 10$) are appreciably altered due to multiple ionization, more so in ionization by helium $(Z_1 = 2)$ ions for which the condition of, say, $Z_1/Z_2 \ge 0.15$ covers twice as large a range of light elements. For such collision systems, theoretical x-ray production cross sections will be somewhat underestimated because the use of single-hole ω_K values. It should be noted that even single-hole fluorescence yields are in 10%-40% error for these relatively light target atoms. 19 The deviations become dramatic with increasing Z_1/Z_2 so that comparison of the theoretical predictions with the 2 He on 4 Be data $(Z_1/Z_2 = 1/2)$ is the most problematic.

3.1.b. Ionization, as the sum of direct ionization and electron capture, in the first Born and ECPSSR theories

Ionization cross sections are obtained according to the first Born approximation 20,21 [$\sigma_K^{\rm FBORN}$, as shown by dashed curve in Fig. 2, consists of direct ionization and electron capture calculated in the plane wave Born approximation (PWBA)²⁰ and the Oppenheimer-Brinkman-Kramers treatment,21 respectively], and the ECPSSR theory15,16 $(\sigma_K^{\text{ECPSSR}}, \text{ solid curve in Fig. 2})$. In both calculations, ionization cross sections σ_{κ} are taken as a sum of the cross sections for direct ionization to the target atom continuum plus electron capture to all bound states on the projectile. Although electron capture gives an additional contribution to ionization, the confusion in the literature exists because many authors still refer to ionization cross sections when only direct ionization cross sections are calculated. This unfortunate error of terminology can be found in particular in the most recent references to ECPSSR calculations. 12,13,22,23 We define and, as a matter of principle, calculate the ECPSSR ionization cross sections always as a sum of the direct ionization15 and electron capture16 cross sections, i.e.,

$$\sigma_{K}^{\text{ECPSSR}} = \sigma_{K}^{\text{ECPSSR}}(\text{DIRECT IONIZATION}) + \sigma_{K}^{\text{ECPSSR}}(\text{ELECTRON CAPTURE}). (1)$$

Although electron capture has negligible contribution to ionization when Z_1/Z_2 is small, we evaluate the ECPSSR ionization cross sections using Eq. (1) for all Z_1/Z_2 projectile-target combinations. Table 7 states the percentage contributions of electron capture to ionization as calculated in the ECPSSR theory. 15,16 Electron capture can contribute more than 1% when $Z_1/Z_2 \ge 1/15$ and the projectile energy per its mass is below 10 MeV/u. Table 7 lists these percentages only for protons and alpha particles because the electron capture contributions are essentially independent of the isotope nature of the projectile at a given velocity. The projectile is assumed to be fully stripped in these calculations (all its states are unoccupied and there are no electrons to screen it); this represents the condition under which most of the data were gathered. Some data were specifically reported for He +; in many articles, however, the charge was unspecified. Contribution of electron capture to total ionization cross sections is calculated in the ECPSSR theory to be at most 5% when $Z_1/Z_2 \le 0.15$ and for fully stripped projectiles, and it would be approximately one-half of that if the projectile were assumed to carry an electron into the collision. Hence, calculations which always presume a fully stripped projectile overestimate the ionization process by no more than a few percents if $Z_1/Z_2 \le 0.15$. For protons on nickel ($Z_1/Z_2 = 0.036$) data of Fig. 2 electron capture contributes less than 0.1% to ionization. For $Z_1/Z_2 > 0.15$ collision systems, theoretical x-ray production cross sections used in this work are underestimated because single-hole ω_{F} values were employed and, sometimes, these cross sections are overestimated because a fully stripped projectile was always assumed. These deviations become dramatic with the increasing Z_1/Z_2 so that the comparison of the theoretical predictions with the ₂He on ₄Be data $(Z_1/Z_2 = \frac{1}{2})$ is the most problematic. We assume, however, that the ignored effect of multiple ionization and an overestimated 16,24 contribution of electron capture at $Z_1/Z_2 \rightarrow \frac{1}{2}$ tend to cancel each other to a great extent.

3.2. Choice of the ECPSSR for theoretical analysis of the data

Figure 2 demonstrates that, while the first Born approximation $\sigma_{\kappa\chi}^{FBORN}$ overestimates the proton on nickel data by as much as three orders of magnitude at lowest proton velocities, $\sigma_{KX}^{\text{ECPSSR}}$ appears to be in good agreement with the measured cross sections. To exhibit these findings in a more refined way, unobscured by the artifact of a log-log graphical comparison, we plot the same data as the ratios of experimental cross sections $\sigma_{KX}^{\text{Exper.}}$ to theoretical predictions in Fig. 3 for the first Born approximation and in Fig. 4 for the ECPSSR theory. To make a complete and compact comparison with all compiled data, the data are grouped in equal (0.1 in length) intervals on the $\log(v_1/v_{2K})$ scale. An arithmetic average of all cross sections in each group so defined is calculated, all data within the group that differ from this average by more than a factor of 2 are rejected, a new average for the group is found, and the rejection is made again from all the data in the group (including previously eliminated data) on the basis of the same criterion. Typically in two but no more than three iterations of this procedure the averages converge to constant values which are plotted in Figs. 3 and 4 for our example of K-shell x-ray production by protons in just one target element.

The success and relative ease in the implementation²³ of the ECPSSR theory, lead to its adoption as a theoretical benchmark for further analysis of the compiled data. A self-contained and critical²⁵ review of this theory is in order; development, scaling properties, and current status of the ECPSSR theory with alternative treatments is presented to justify a selection of this particular approach to inner-shell ionizations. The ECPSSR theory is reviewed vis à vis the first Born approximation and more ab initio theoretical approaches to inner-shell ionization.

FIG. 3. Ratios of experimental cross sections to the first Born approximation for protons incident on nickel. Each step in the staircase curve represents the arithmetic average of all ratios found in the corresponding interval of v_1/v_{2K} .

3.2.a. Review and general scaling of the ECPSSR

A reduction of the discrepancies between the first Born approximation and the experiment occurs because the ECPSSR theory accounts for the binding effect that, being important at low projectile velocities and for large Z_1/Z_2 , inhibits ionization and results in lower cross sections than the first Born approximation. Also, the ECPSSR approach corrects for the Coulomb-deflection of the projectile from a straight-line trajectory and considers the projectile energy loss exactly in the minimum momentum transfer; both corrections lead to smaller cross sections. The underestimation of the data in the first Born approximation for ionization of heavy target elements (large Z_2 's mean small Z_1/Z_2) stems from its nonrelativistic treatment of the K-shell electron. The ECPSSR theory attempts to remedy this shortcoming by accounting for the relativistic effect and indeed by bringing the calculations in closer agreement with the data.

The ECPSSR theory originates with the work of Brandt, Laubert, and Sellin²⁶ who accounted for the increased binding and Coulomb-deflection effects in K-shell ionization. An extension of this work to the L shell was made²⁷ and subsequently, after a theoretical basis for the perturbed stationary-state (PSS) approach was established,²⁸ polarization^{29,30} and relativistic³⁰ effects were included in the CPSSR theory³⁰ as a precursor of the ECPSSR approach¹⁵ which also accounts for the projectile-energy loss. This theory was developed for electron capture in Ref. 16 in a similar manner as for direct ionization in Ref. 15. The ECPSSR theory for K- and L-shell ionization has been also extended to the M shell.³¹

FIG. 4. Ratios of experimental cross sections to the ECPSSR for protons incident on nickel. Each step in the solid curve represents the arithmetic average of all ratios found in the corresponding interval of v_1/v_{2K} ; the mean value for all proton on nickel ratios is 0.96.

In the slow collision limit, the calculations of the first Born approximation—for direct ionization which generally dominates electron capture-scales over $\xi_K = 2v_1/v_{2K}\theta_K$ where θ_K is defined as the observed binding energy in terms of screened hydrogenic value $\frac{1}{2}Z_{2K}^2$. In the ECPSSR theory, ¹⁵ ξ_K is replaced by ξ_K^R/ζ_K to correct ³⁰ the first Born approximation for the relativistic and perturbed stationary-state effects; ξ_K is replaced with ξ_K^R = $[m_K^R(\xi_K/\zeta_K)]^{\frac{1}{2}}\xi_K$ to simulate the relativistic effect³² and ζ_K accounts for the PSS effect according to Eq. (20) of Ref. 30. After the analytically known 15 functions that correct for the projectile's energy loss and Coulomb deflection are factored out, all cross sections are reduced^{27,33} in the slow collision limit to F_K , a universal function of ξ_K^R/ξ_K . For ξ_K^R/ξ_K $> 1, F_K$ diverges from this form depending on $\zeta_K \theta_K$. However, to the extent that $\zeta_K \theta_K$ does not (except for very light targets) vary significantly, the ionization cross section remains to a good approximation a universal function of ξ_K^R/ξ_K in all collisional regimes. This enables us to group Kshell x-ray production cross sections according to the ξ_K^R/ζ_K parameter for a comprehensive analysis of the compiled data against the predictions of the ECPSSR theory.

3.2.b. Current status, alternatives, advantages and shortcomings of the ECPSSR

The strength of the ECPSSR calculations lies in the relative ease with which this approach allows to incorporate analytically relevant physical effects into formulas of the first Born approximation for the ionization cross section; the

role that these effects play can be recognized without being entangled in intricacies of the second or distorted Born approximation which requires a considerable numerical effort. Nevertheless, as an approximate description of an inelastic collision process, the ECPSSR theory is yet to be fully tested by more involved numerical procedures. It is hoped that with the phenomenal progress in computerized techniques such procedures will emerge as an penultimate check of the ECPSSR theory as well as its sophisticated replacements. The ultimate test for any theory will be in comparison of its predictions with experimental results.

Coulomb-deflection and PSS factors derived in the ECPSSR treatment have been utilized to modify first-order perturbation theories such as the binary encounter approximation (BEA).34 We have stated previously4,35 that the incorporation of the essentially quantum-mechanically derived correction factors into the BEA cross section, which equals the PWBA cross section under very restrictive conditions,36 is not proper. Even in semiclassical and quantum approximations a selective use of just one of the ECPSSR factors might be questioned, especially when corrections for other effects are made on the basis of older^{26,27,29,30} or different14,37-39 accountings for the C, PSS, and R effects. An obvious example of misapplication 40 of the ECPSSR theory has been discussed elsewhere. 41 The Coulomb-deflection factor of the ECPSSR approach has been extensively used by Chen and Crasemann^{22,43-45} in calculations that employ the united atom binding energy to simulate the PSS effect but take the energy loss and relativistic effects into account ab initio. These numerical calculations allow for exact limits for the momentum transfers and use relativistic wavefunctions based on the screened hydrogenic⁴² or Hartree-Slater^{22,43-45} potential. The K- and L-shell direct ionization calculations^{22,43} were extended to the M shell⁴⁴ and even to the Nshell.⁴⁵ The ECPSSR theory has been utilized in numerous comparisons with experimental inner-shell ionization cross sections. Predictions of the ECPSSR approach and its predecessors^{26,27,29,30} were also used in (i) generation of protoninduced x-ray emission (PIXE) spectra, 46 (ii) calculation of relative L-shell x-ray intensities, 47 (iii) absolute calibration of the efficiency for semiconductor detectors, 48 (iv) alignment studies,⁴⁹ (v) semiempirical extraction of L-shell fluorescence yields,50 and (vi) discussion of the feasibility of an antiproton detector.⁵¹ The ECPSSR theory was employed in the determination of semiempirical formulas for K-shell ionization. 14,52

In this work we calculate the ECPSSR ionization cross sections as stated in Refs. 15 and 16, although some improvements have been suggested since these references were published. Rigorous, numerical *ab initio* calculations and comprehensive comparisons with all inner-shell ionization data will decide whether nonadiabatic extentions⁵³ of the PSS approach are warranted. Coupled-state calculations are still in development. Their reliance always hinges on a clever choice of a set of basis states. Optimal selections have to be large enough to account for the physics of a collision and yet sufficiently small to be computationally manageable. A coupled-state calculation by Reading *et al.*⁵⁴ that utilizes the so-called

forced impulse approximation and claims to conquer the slow collision regime has been carried out only at the first Born approximation level.

Unfortunately, the suggestion 10 that one should "investigate various effects theoretically since it is much easier to turn an effect on or off in a computer experiment than in nature" cannot be as yet carried out in practice. A "highly sophisticated computer program"10 that could control all ECPSSR effects ab initio in any collision regime does not exist. While some calculations from the outset incorporate the E and R effects^{22,42-45} and also account semiclassically for the Coulomb deflection, 55,56 they treat the PSS effect using sometimes⁵⁵ the old prescription of Ref. 26 or making⁵⁶ the united atom approximation which applies only in the strict limit of low projectile velocities. While other schemes⁵⁷ perform admirably to test the E, C and PSS effects, they were implemented only with nonrelativistic wave functions. Perhaps the closest to rigorous numerical test of all E. C. PSS. and R factors are the codes of Trautmann and co-workers⁵⁸; they still, however, make ad hoc modifications to simulate the PSS effect. This effect is clearly seen in the ab initio coupled-state calculation Mehler et al.59 that uses relativistic wave functions and offers promise; however, it is difficult to judge the outcome of this scheme because only one graph for K-shell ionization of silver by 0.9-MeV protons was presented⁵⁹ and in the subsequent paper only the probability for Kshell ionization is reported. 60 In accounting for PSS effects. this calculation gives a 20% reduction of the direct-ionization cross section as opposed to the ECPSSR approach that predicts only a few percent decrease of σ_K for the analyzed collision. This would be in agreement with Kocbach, who has concluded⁶¹ that the ECPSSR treatment underestimates the role of the binding effect.²⁶ Mukoyama and Lin,⁶² with an expansion of the relativistic wave function into Slatertype orbitals, have evaluated cross sections for K-shell ionization of copper by 0.5-2 MeV protons. These calculations, just as those of Refs. 59 and 60, lie $\sim 15\%$ below the ECPSSR results. Anholt et al. 63 have recommended that the cutoff impact parameter below which binding occurs be doubled; this would lower the ECPSSR cross sections, especially around their maxima, and thus would bring them in agreement with Refs. 59-62.

Sarkadi, 64 accounting for the nonadiabaticity of PSS states, finds contrary to Anholt's recipe⁶³ that the binding effect should have been deemphasized outside the slow collision regime; when v_1 approaches v_{2K} , the K-shell does not adjust adiabatically and hence the binding effect should not be as large as the ECPSSR has it. This would increase the ECPSSR cross section around its peak, and thus widen the existing disagreement with Refs. 59-62. The coupled-state calculations of Mehler et al. 59,60 explain an enhancement of ionization, which counters the effect of the increased binding, as an effect of interaction among the continuum states, while the approach of Brandt et al. 29,30 traces the increase in ionization cross sections to the polarization of the bound state. A variational PSS description⁶⁵ of the polarization effect^{29,30} determines that the ECPSSR underestimates as well this antibinding effect. Modifications suggested in Refs. 61

and 65 appear to cancel each other and thus they mask possible overall inadequacies in the ECPSSR treatment of the PSS (combined account for binding and polarization) effect. We now turn to the ultimate test of any theory, i.e., a broad comparison of its predictions with experimental observations.

3.3. Comparison of experimental and ECPSSR cross sections

In the pursuit of systematic discrepancies between the data and the predictions of the ECPSSR theory as Z_2 -dependent deviations, we classify somewhat arbitrarily all elements as: light $(4 \leqslant Z_2 \leqslant 13)$, medium $(14 \leqslant Z_2 \leqslant 66)$, and heavy (67 \leq Z₂ \leq 92). Note that this classification assigns $Z_1/Z_2 > 0.15$ for the light atoms and $Z_1/Z_2 < 0.03$ for the heavy atoms bombarded by helium ions. The ratios of $\sigma_{KX}^{\text{Exper.}}$ to $\sigma_K^{\rm BORN}$ or $\sigma_{KX}^{\rm ECPSSR}$ exhibit a substantial and erratic dependence on \mathbb{Z}_2 for the lightest target atoms $(4 \leqslant \mathbb{Z}_2 \leqslant 9)$ which lack a fully filled L shell. Fluorescence yields for these elements could be uncertain by more than 40%. 19 These small K-shell x-ray fluorescence yields are indeed greatly affected by multiple ionizations. They are also changed by chemical and morphological changes in the incomplete L shell depending on the molecular composition and physical phase of the target. Finally, even in monatomic gas targets, the ionization cross section in itself is affected by relatively strong correlation effects in the very structure of the lightest atoms; the screened hydrogenic wave functions, on which our cal-

2.0 0. 0.2 10 ≤ Z₂ ≤ 13 14 ≤ Z₂ ≤ 66 0.0 67 ≤ Z₂ ≤ 92 10 ≤ Z₂ ≤ 92 0.02 0.0 0.00 0.002 0.1 2.0 0.5 1.0 ν₁/ν_{2K}

Fig. 5. Averaged [within the 0.1 intervals of $\log(v_1/v_{2K})$] ratios of experimental cross sections to the first Born calculations for the relatively light ($10 \leqslant Z_2 \leqslant 13$: open circles), medium ($14 \leqslant Z_2 \leqslant 66$: half-open circles), and heavy ($67 \leqslant Z_2 \leqslant 92$: closed circles) target elements bombarded by protons. The solid curve is based on the averaged ratios for the $10 \leqslant Z_2 \leqslant 92$ targets.

culations are based, or even Hartree–Slater schemes become inappropriate because the independent electron model of an atom breaks down. For the lightest atoms, the experiment-to-theory ratios are not shown at all in Fig. 5 since their erratic behavior detracts from the main impression that this figure conveys, e.g., predictions of first Born approximation can be as much as three orders of magnitude above the data. The erratic behavior among the lightest atoms can be easily observed in Figs. 6, 7, and 9, where ratios for the $4 \leqslant Z_2 \leqslant 9$ elements are displayed separately with every element identified by its atomic number. We exclude these lightest target atoms from further statistical analysis: the rejection criterion will be applied to some 7000 data only in the $10 \leqslant Z_2 \leqslant 92$ range of elements.

Figures 5–9 show the experimental-to-theoretical cross section ratios as horizontal bars for all data with $10\leqslant Z_2\leqslant 92$ and as circles for three groups of data in the preselected Z_2 ranges. For moderately light ($10\leqslant Z_2\leqslant 13$) elements, which are predominantly (81%) based on aluminum cross sections, these ratios are drawn as the open circles. The half-open circles represent similar ratios for medium elements of which titanium, chromium, iron, cobalt, nickel, copper, silver, and tin amount to nearly a one-half of all data in the $14\leqslant Z_2\leqslant 66$ range. The solid circles are drawn for heavy elements ($67\leqslant Z_2\leqslant 92$) of which tantalum, gold, and lead are most typical, accounting for almost a one-half of all data in the $67\leqslant Z_2\leqslant 92$ range. Aluminum and gold were chosen, in fact, as representative of light and heavy elements by Chadwick, 66 after the 1912 discovery of x rays from iron bombard-

FIG. 6. Averaged [within the 0.1 intervals of $\log(v_1/v_{2K})$] ratios of experimental cross sections to the ECPSSR predictions for relatively light (open circles), medium (half-open circles), and heavy (closed circles) target elements bombarded by protons. The solid curve is based on the averaged ratios for the $10 < Z_2 < 92$ targets; ratios for the $4 < Z_2 < 9$ elements are identified by the atomic numbers of these targets. The mean value of the solid curve is 0.96.

ed by alpha particles. The trends of Fig. 2, the failure of the first Born approximation (illustrated in Fig. 5 for protons only since these trends are similar for other projectiles) and the relative success of the ECPSSR theory, are confirmed and well documented by Figs. 6–9.

The rejected data, i.e., the measurements which differ by more than a factor of 2 from other experimental cross sections in comparable collision regimes, are listed in Tables 2-5 in the bold print for easy recognition. Their identification may serve as a guide for experimentalists into trouble areas in which more measurements would be needed and worthwhile. Our criterion rejects 227 cross sections out of 7007 data. Such a large rejection would be anticipated if the standard deviation σ in the normal distribution of these data was such that 2.14σ were comparable to the measured cross sections. Experimental uncertainties, however, rarely exceed 25%. The ratios, which are more than a factor of 2 different from the mean values, typically lie no less than 4σ from these averages: at most five such ratios would be statistically expected in a sample of 7000 data, while 98% of all rejected ratios is most probably due to truly bad experi-

In addition, new information emerges from this comprehensive and detailed experiment-to-theory comparison. The first Born approximation overestimates the data by orders of magnitude for the elements in the middle of the periodic table when projectiles are slow. It does it even more dramatically for light elements where Z_1/Z_2 is relatively large. On the other hand, when Z_1/Z_2 is small the first Born

FIG. 7. Averaged [within the 0.1 intervals of $\log(v_1/v_{2\kappa})$] ratios of experimental cross sections to the ECPSSR predictions for relatively light (open circles), medium (half-open circles), and heavy (closed circles) target elements bombarded by deuterons. The solid curve is based on the averaged ratios for the $11 \le Z_2 \le 79$ targets; ratios for beryllium are identified by its atomic number. The mean value of the solid curve is 0.92.

FIG. 8. Averaged [within the 0.1 intervals of $\log(n_1/n_{2K})$] ratios of experimental cross sections to the ECPSSR predictions for aluminum (open circles) and medium (half-open circles) target elements bombarded by ³He ions. The solid curve is based on the averaged ratios for the $13 \le Z_2 \le 47$ targets. The mean value of the solid curve is 1.01.

FIG. 9. Averaged [within the 0.1 intervals of $\log(v_1/v_{2K})$] ratios of experimental cross sections to the ECPSSR predictions for light (open circles), medium (half-open circles), and heavy (closed circles) target elements bombarded by ⁴He ions. The solid curve is based on the averaged ratios for the $10 \le Z_2 \le 92$ targets; ratios for the $4 \le Z_2 \le 9$ elements identified by the atomic numbers of these targets. The mean value of the solid curve is 1.00.

approximation on the average underestimates the data by nearly a factor of 3 when $v_1/v_{2K} \approx 0.1$. The ECPSSR removes these discrepancies so that the average ratios of experiment to theory are within 20% of the ideal ratio of 1 for protons. A similar conclusion was made in Ref. 15 for identical (protons and targets with $10 \leqslant Z_2 \leqslant 92$) collision systems but merely a one-half of the current data base for proton-induced x-ray production cross sections. For deuterons the agreement is within 25%, except at the lowest projectile velocities where ECPSSR overestimates the measured cross sections by a factor of 2.

For ³He ions, the discrepancies are much more pronounced. They are, however, less significant due to the relatively small (4% of all compiled cross sections) and limited (to $13 \le Z_2 \le 47$ targets) amount of data that is available. As opposed to general trends at small v_1/v_{2K} for any other target-projectile combination, the experimental K x-ray production cross section from aluminum bombarded by ³He is up to 70% larger then the ECPSSR predictions; these data, however, are from only a few references. The agreement of ECPSSR with the compiled ⁴He data is comparable to its concord with the proton data on the average. Yet the divergence in agreement with the light versus heavy target data is more evident in helium-induced cross sections because Z_1/Z_2 is twice as large.

Experiment-to-theory comparisons, such as presented in this work and most recently by Paul and his collaborators, $^{5-14}$ are interpreted as tests of theories to be gauged by massive empirical collections of data. It is amusing to recall Cork 67 who, in a reversal of this procedure, argued that his experiment was acceptable because its deviation from the theory was comparable to theoretical uncertainties. Cork concluded that the measured cross section for K-shell x-ray production in iron by deuterons was "10 to 100 times greater than the theoretical value, but the difference could not be regarded as outside the limit of error in the calculation." Ironically, this particular calculation agrees (well within a factor of 2) with the predictions of current theories for σ_{KX} in iron by 10-MeV deuterons.

We continue to use our latest formulation of the ECPSSR theory. 15,16 Residual deviations of this theory from the data are present and are indeed statistically significant. While the data for moderately heavy and light target elements are in basic agreement with the averages for all data, the cross sections for the lightest and heaviest target atoms oscillate in opposite directions around these averages. In the slow collision limit, the measured cross sections are overpredicted when Z_1/Z_2 is small but they appear to be underpredicted when Z_1/Z_2 is large. Similar trends are noticed in recent work of Paul et al.8-14 The overprediction of the experimental cross sections in heaviest targets is connected with a crude way in which the ECPSSR theory accounts for the relativistic effect; this theory indeed overestimates the importance of the relativistic treatment of the K-shell electron as proven⁴² by numerical calculations that use the Dirac wave functions. The underprediction of the data for $Z_1/Z_2 > 0.15$ has been discussed above in terms of the influence of multiple ionizations on σ_K . This underprediction seems to contradict the pronouncements⁵⁹⁻⁶¹ that the

FIG. 10. Same as Fig. 6 but vs the variable ξ_R^R/ζ_R according to which the ECPSSR ionization cross sections scale in the slow collision regime. Correspondingly, the averages are within the 0.1 intervals of $\log(\xi_R^R/\zeta_R)$.

Fig. 11. Same as Fig. 9 but vs the variable ξ_R^R/ζ_R according to which the ECPSSR ionization cross sections scale in the slow collision regime. Correspondingly, the averages are within the 0.1 intervals of $\log(\xi_R^R/\zeta_R)$.

ECPSSR theory underestimates the PSS effect, smaller ionization cross sections that Refs. 59 and 61 suggest would accentuate the discrepancy with experiments. On the other hand, revised accounts for the binding64 or for the polarization⁶⁵ effects could perhaps remove some of this discrepancy. As discussed in Sec. 3.2.a, the ECPSSR theory exhibits a nearly universal scaling with respect to ξ_K^R/ζ_K . Hence the ratios of Figs. 6 (for protons) and 9 (for ⁴He) are, respectively, replotted as Figs. 10 and 11 in terms of this variable: the deuteron and ³He ratios remain essentially the same because their relative scarcity prevents a statistically meaningful differentiation. Since ξ_K^R/ξ_K is more natural than v_1/v_{2K} in the scaling of the ECPSSR calculations, the replotted ratios are somewhat smoother and, especially at low velocities. the dichotomy between the light and heavy targets is more evident. Also, for large Z_1/Z_2 , the discrepancy between the theory and the data is larger in Figs. 10 and 11. The deviations detected in Figs. 6 and 9 are now seen in the sharpest focus; they still persist and a fortiori reflect on real discrepancies between experiment and the ECPSSR theory.

4. Conclusions

This analysis supports the main conclusions of Ref. 15: for the $10\leqslant Z_2\leqslant 92$ targets, theory and experiment agree, on the average, to within \pm 10% to 20%. With one standard deviation of \pm 0.20, the mean ratio of $\sigma_{KX}^{\text{Expers}}/\sigma_{KX}^{\text{ECPSSR}}$ for these targets and all projectiles equals 0.97. For ¹H, ²H, ³He, and ⁴He, this ratio is, respectively, 0.96 \pm 0.19, 0.92 \pm 0.19, 1.01 \pm 0.24, and 1.00 \pm 0.23. The residual deviations are nevertheless genuine and systematic. Only a comprehensive survey of all the data allows to isolate these deviations as a fine structure superimposed on the billionfold change of cross sections with the projectile velocity.

Perhaps the Coulomb deflection factor of the ECPSSR theory should be reconsidered. A quantum mechanical derivation of this factor might be fundamentally more correct. The ECPSSR could be faulty in its treatment of PSS effects. The discrepancy between it and multistate calculations of the K shell rather than inadequacies in the PSS formulation. The calculations of Refs. 59, 60, and 62 span a short interval of v_1/v_{2K} from 0.12 to 0.31; an extension of this interval with calculations that employ and do not employ a screened Coulomb potential for the K-shell electron would be of interest.

For now, the deviations found in our analysis are attributed primarily to inadequacies of a screened hydrogenic description of the target electron on which the ionization calculations ^{15,16,20,21} rest; this explanation of the observed deviations seems to be particularly valid when K shells of relatively light targets are considered. The ratios of the cross section based on Hartree–Slater wave functions ^{22,29,71} to the cross section evaluated with the screened hydrogenic wave functions show (see Fig. 3 of Ref. 15) remarkable resemblance to the ratios displayed in Figs. 10 and 11. Hence, we speculate that, provided the relativistic effect will be better accounted for in the theory and the multiple-ionization effect considered, almost perfect agreement with the data

would result if the ECPSSR cross sections were calculated with better wavefunctions for atomic K shells.

Known disagreements between the ECPSSR predictions and L-subshell data appear to make this conclusion very speculative indeed. Attempts have been made to explain some of these discrepancies in terms of a two-step mechanism in which a vacancy decay in an ionized subshell is followed by intrashell transitions during the same collision.⁷² These corrections have been made, however, in terms of the second order transition probabilities (instead of amplitudes) that were evaluated using the straight-line approximation and without account for PSS effects. An inclusion of PSS effects in the second Born approximation has been advocated by Sarkadi. 73 Strong inter-subshell couplings influence L-subshell ionization probabilities⁷⁴ and affect ionization cross sections. 75 It is hoped that rigorous numerical calculations—which extend beyond the first Born approximation. treat the E, C, PSS, and R effects concomitantly, and are ab initio in all collisional regimes—will become available in a near future. Ultimately, comprehensive compilations and analyses of the L- and M-shell data are needed to convert our tentative deductions, on the shortcomings of the ECPSSR treatment of K-shell ionization in particular, to more firm conclusions on inadequacies of this theory in general.

Aside from open questions of theoretical interpretation of the compiled data, the present compilation appears to have its own merits as an assessment of worthwhile experiments and, perhaps, as a stimulant for further measurements. It identifies the target elements for which K-shell xray productions cross sections have never or seldom been measured with light ion bombardment. It points to the projectiles for which more measurements would be desirable. The compiled data exhibit particularly large scatter among the deuteron and ³He induced cross sections; possible bad measurements cannot be reliably recognized because of the relatively small (11% of all compiled cross sections) amount of these data. All helium-induced x-ray production cross sections should be reported with the He charge state: especially, for light target elements and at low-projectile velocities where electron capture contributes significantly to K-shell ionization (see Table 7). An extension of proton measurements at relatively high velocities, $v_1 > v_{2K}$, to other fast projectiles would be beneficial in understanding of relatively large discrepancies between lighter and heavier elements that appear (see Figs. 6 and 10) in the proton data at high velocities. It remains to be seen whether experimentalists will be prompted to a revival of K-shell x-ray measurements in asymmetric collisions. Such a resurgence could slow down the current rapid decline in the rate with which new data are reported (see Fig. 1) and it might force a quantitative revision of our present forecast about the total number of compiled cross sections saturating at 10 000.

5. Acknowledgments

This work was supported by the National Institute of Standards and Technology Grant No. NB82NADA3033, as a part of an interagency program supported by the National Science Foundation and the Office of Basic Energy Sciences, Department of Energy.

TABLE 1. Distribution of compiled K-shell x-ray production cross sections, for each target of atomic number Z2=4-92, with respect to the type of projectile (Z1=1,2: ions of H-1, H-2, He-3, He-4). Z2 of the elements, for which data are listed in Tables 2-5, is highlighted in the bold print. A summary of the compiled data for all target elements appears at the bottom of this table

Z2	Protons	+	Deuterons	+	He-3	+	He-4	=	All Ions
4	43		7		0		22		72
5	0		0		0		0		0
6	164		0		0		52		216
7	21		0		0		18		39
8	54		0		0		0		54
9	18		0		0		12		30
10	22		0		0		12		34
11	8		3		0		0		11
12	41		0		0		12		53
13	200		45		70		104		419
14	16		2		7		6		31
15	29		13		10		0		52
16	34		13		0		4		51
17	31		13		0		19		63
18	37		0		10		5		52
19	32		13		0		4		49
20	87		6		0		37		130
21	86		14		0		9		109
22	286		42		33		169		530
23	110		10		0		63		183
24	162		6		32		61		261
25	98		6		0		35		139
26	267		38		0		110		415
27	126		10		23		56		215
28	222		45		14		89		370
29	420		38		19		178		655
30	162		0		0		32		194
31	34		13		0		11		58
32	73		4		23		51		151
33	16		0		0		9		25
34	56		0		13		54		123
35	14		0		0		4		18
36	23		0		0		0		23
37	31		10		0		26		67
38	21		11		0		0		32
39	53		0		0		30		83
40	38		10		9		12		69
41	32		8		8		27		75
42	118		0		0		51		169
43	0		0		0		0		0
44	1		0		0		0		1
45	10		0		0		16		26
46	44		0		11		13		68
47	268		18		8		82		376
48	54		10		0		24		88

TABLE 1. Distribution of compiled K-shell x-ray production cross sections, for each target of atomic number Z2=4-92, with respect to the type of projectile (Z1=1,2: ions of H-1, H-2, He-3, He-4). Z2 of the elements, for which data are listed in Tables 2-5, is high-lighted in the bold print. A summary of the compiled data for all target elements appears at the bottom of this table — Continued

Z 2	Protons +	Deuterons	+ He-3	+ He-4 =	All Ions
49	70	8	0	7	85
50	120	8	0	83	211
51	31	16	0	16	63
52	17	0	0	10	27
3	39	0	0	10	49
54	2	0	0	0	2
55	15	0	0	4	19
6	40	0	0	8	48
57	12	0	0	0	12
8	44	5	0	7	56
9	17	0	0	7	24
0	59	0	0	9	68
1	1	0	0	0	1
2	58	0	0	12	70
3	12	0	0	0	12
4	28	11	0	26	65
5	25	0	0	0	25
6	0	0	0	0	C
57	57	0	Ō	21	78
8	0	Ö	Ō	0	(
9	26	Ö	Ō	22	48
0	10	0	Ō	0	10
1	0	0	Ö	5	5
2	6	Ö	ő	7	13
3	66	11	Ö	18	95
14	32	15	ő	23	70
75	6	0	Ö	6	12
76	0	0	0	0	(
7	0	0	0	0	(
	8	0	0	12	20
78 70				39	
79	90	14	0 0	0	143
30	0 0	0 0	0	0	(
31				31	
32	56	0	0		87 23
33	7 0	0 0	0 0	16 0	
34		0	0	0	(
35	0			_	
36	0	0	0	0	(
37	0	0	0	0	
38	0	0	0	0	
39	0	0	0	0	
90	26	0	0	21	4
91	0	0	0	0	-
92	45	0	0	6	5
72-/ 01	2 Dest	Dout	H2	u _{с =} /.	411 Det
Z2=4-9:		Deuterons	He-3	He-4	All Dat
ıarget:	s 4687(63%)	496(7%)	290(4%)	1945(26%)	741

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}

<i>E</i> ₁	σ^{Exper}	σ^{Exper}	E_{t}	$\sigma^{ m Exper}$	σ^{Exper}	E_{i}	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
_					11 00				
4	Berylliu	m	Fluoresc	ence yie	= 1d = 0.0	0033			
1.50	-2 8.70+0	4.76-1			L 4.71-1		2 7.50+1		35
	-2 1.60+2				2 6.60-1		2 6.50+2		
	-2 1.00+3				3 7.91-1		2 1.60+3		
	-2 1.80+3				8 8 8 2 - 1		-1 2.30+3		
	-1 2.70+3 -1 3.40+3		1.60-	1 3.00+3	3 1.13+0	1.80	-1 3.20+3	1.20+0	
2.00	-1 3.40+3	1.20+0							
5.00	-1 1.51+3	7.72-1	7.50-	1 1.43+3	3 9.08-1	1.00-	HO 1.32+3	9.96-1	71
	+0 1.23+3				3 1.15+0		HO 1.07+3		
1.80	+0 1.01+3	1.20+0	2.00+	0 9.78+2	2 1.24+0				
3.00	-1 2.53+3	1.04+0	5.00-	1 2.26+3	3 1.16+0		-1 2.00+3		92
	+0 1.68+3		1.20+	0 1.61+3	3 1.47+0	1.50-	+0 1.52+3	1.60+0	
1.80	+0 1.42+3	1.68+0			•				
1 00	_0 2 17_1	1 25-1	1 20-	2 9 40-1	1 1.37-1	1 50.	-2 2.78+0	1 50_1	119
	-2 3.17-1 -2 1.16+1				1 2.23-1		-2 2.76+0 -2 7.49+1		119
	-2 1.10+1 -2 2.23+2				2 4.56-1		-2 7.49+1 -2 7.33+2		
	-2 1.28+3				3 8.12-1		-1 2.17+3		
0.00			2.00			2.20			
6	Carbon		Fluoresc	ence yie	eld = 0.0	028			
1.50	+0 3.00+3	1.37+0							10
1.50	-2 5.76-2	1.03-1	2.00-	2 2 00-	1 9.24-2	2.50	-2 5.58-1	9.55-2	11
	-2 1.83+0				0 1.60-1		-2 1.53+3		~~
	-2 3.40+1				1 2.36-1		-2 1.17+2		
9.00	-2 1.66+2	3.46-1	1.00-	1 2.07+2	2 3.41-1	1.10	-1 2.74+2	2 3.71-1	
4.99	-1 2.17+ 3	7.65-1	5.95-	1 2.24+	3 7.87-1	6.98	-1 2.28+3	8.11-1	
7.75	-1 2.28+3	8.26-1	9.10-	1 2.29+3	3 8.61-1		+0 2.24+3		
	+0 2.18+3				3 8.95-1		+0 2.10+3		
	+0 2.09+3		1.51+	0 2.02+3	3 9.21-1	1.66	+0 1.94+3	3 9.28-1	
1.91	+0 1.89+3	9.73-1							
2 00	-2 9.50-1	4 39-1	3 00-	·2 4 30+1	0 3.40-1	4 00	-2 2 00+	L 5.07-1	16
			6.00-						10
	- 2 2.20+2			_ 0.20'	_	,	· · · · · ·	- · · · · · ·	
3.00									
1.50	-2 4.80-1	8.58-1	2.00-	2 1.80+0	0 8.31-1	2.50	-2 5.40+0	9.25-1	23
3.00	-2 1.10+1	8.70-1	3.50-	2 2.10+	1 8.90-1	4.00	-2 3.60+3	l 9.12-1	
5.00	-2 8.10+1	9.20-1							

Table 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
2.00	-2 1.70	+0 7.85 - 1	2.50	-2 5.004	⊦0 8.56 - 1	3.00)-2 1.20+1	9.49-1	26
		1 9.12-1			F1 8.64-1		0-2 1.30+2		
		-2 7.95 - 1	8.00	-2 2.80	F2 7.78-1		0-2 3.70+2		
1.00	-1 4.70	-2 7.75 - 1	1.20	-1 6.60	F2 7.59-1	1.40	0-1 9.10+2	8.07-1	
1.60	-1 1.20	+3 8.76 - 1	1.80	-1 1.30	F3 8.18-1	2.00)-1 1.50+3	8.40-1	
2.00	+0 7.60	F2 4.01-1			+2 5.79-1	4.00)+0 8.40+2	6.85-1	37
	-	-2 7.84-1	1.00	+1 4.60	+2 7.35 - 1	1.20)+1 2.80+2	5.15-1	
1.40	+1 3.30+	-2 6.85-1							
		+0 7.97 - 1			+1 6.89-1	4.80)-2 5.54+1	7.24-1	46
		F1 6.94 - 1			+2 6.69-1)-2 2.44+2		
		F2 7.51-1			+2 7.75-1		5-1 5.42+2		
		12 8.15-1	1.26	-1 7.82-	+2 8.24-1	1.35	5-1 8.99+2	8.44-1	
1.45	-1 1.03-	+3 8.66 - 1							
1.00	-1 3.50-	F2 5.77-1	1.10	-1 5.00-	+2 6.78-1	1.20	0-1 6.00+2	6.90-1	50
1.30	-1 7.00-	F2 7.00-1	1.40	-1 7.50-	+2 6.65-1	1.50	0-1 8.00+2	6.39-1	
1.60	-1 1.00-	F3 7.30-1	1.70	-1 1.10-	+3 7.43-1		0-1 1.20+3		
		F3 6.89 - 1			+3 6.55-1	4.00	0-1 2.00+3	7.31-1	
		F3 7.40-1			+3 7.38-1		0-1 2.00+3		
8.00	-1 2.00-	F3 7.28-1	9.00	-1 1.90-	+3 7.12-1	1.00	0+0 1.80+3	6.97-1	
		-2 1.01+0			-1 7.97-1	1.50	0-2 4.00-1	7.15-1	51
		-1 6.67-1			+0 6.00-1		0-2 3.30+0		
		FO 5.46-1			+1 5.51-1	4.00	0-2 2.20+1	5.57-1	
4.50	-2 3.20-	⊦ 1 5.26-1	5.00	-2 5.10-	+1 5.80-1				
1.00	+0 2.97-	+3 1.15+0	2.00	+0 2.04-	+3 1.08+0	3.00	0+0 1.65+3	1.11+0	70
4.00	+0 1.34-	+3 1.09+0	6.00	+0 1.04-	+3 1.13+0		0+0 8.40+2		
		+2 1.12+0			+2 1.14+0	1.40	0+1 5.60+2	1.16+0	
1.60	+1 4.50-	+2 1.04+0	1.80	+1 4.20-	+2 1.07+0				
2.90	-1 2.21	+3 9.21-1			+3 9.83-1	7.20	0-1 2.77+3	9.90-1	81
1.02	+0 2.45	+3 9.54-1	2.00	+0 2.01	+3 1.06+0	3.00	0+0 1.46+3	9.83-1	
		+3 1.00+0					0+0 9.30+2		
		+2 1.01+0					0+0 7.20+2		
		+2 1.07+0			+2 1.12+0		0+1 6.30+2		
		+2 1.08+0	1.40	+1 5.30-	+2 1.10+0	1.50	0+1 5.30+2	1.16+0	
1.60	+1 5.80-	+2 1.34+0							
		+2 6.84-1			+2 6.94-1		0-1 9.10+2		82
		+3 7.48-1			+3 7.62-1		0-1 1.77+3		
		+3 8.35-1			+3 8.11-1		0-1 2.33+3		
		+3 8.26-1	7.00	-1 2.28-	+3 8.11-1	8.00	0-1 2.09+3	7.61-1	
1.00	+0 2.10-	+3 8.13-1							
1.80	+1 4.28	+2 1.09+0	1.90	+1 3.79	+2 1.00+0	2.00	0+1 3.69+2	1.02+0	85
2.10	+1 3.59-	+2 1.03+0	2.20	+1 3.39	+2 1.01+0	2.30	0+1 3.30+2		
2.40	+1 3.10-	+2 9.92 - 1	2.50	+1 3.10-	+2 1.03+0		0+1 3.10+2	1.06+0	
							,		

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1 σ^{Ex}	per	o ^{Exper}	E_1	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV) (ba	rn) <i>o</i>	ECPSSR	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
6.0	0-1 2.45+	-3 8.61 - 1	8.00-1	2.34+3	8.52-1	1.0	0+0 2.2	27+3 8.78-1	157
	0+0 2.19+				9.35-1	1.6	0+0 2.0	2+3 9.49-1	
1.8	0+0 1.97+				1.01+0				
7	Nitroge	en	Fluoresce	nce yie	1d = 0.0	0052			
	0-2 2.69+				8.78-1			31+1 7.97-1	46
	0-2 3.38+				7.59-1			19+1 7.95-1	
	0-2 1.26+				7.43-1			20+2 7.71-1	
	6-1 2.73+ 5-1 4.28+			3.26+2	7.58-1	1.3	35-1 3.8	34+2 7.67-1	
1.4	3-1 4.201	FZ 7.30-1							
1.2	5-1 3.17+	2 7.51-1	1.50-1	4.70+2	7.56-1	1.7	75-1 6.4	2+2 7.82-1	82
	0-1 8.21+				7.97-1			6+3 8.20-1	
4.0	0-1 1.814	3 8.74-1			8.86-1				
8	Oxygen		Fluoresce	nce yie	1d = 0.	0083			
2 0	0-2 1.86-	.1 1 <u>0</u> 0±0	2 50-2	/ ₄ 60-1	9.14-1	3 (nn_2	40-1 8.14-1	18
	0-2 1.80				7.34-1			70+0 7.36 - 1	10
	0-2 7.00				7.24-1			40+1 7.25-1	
	0-2 1.884				7.26-1			10+1 7.27-1	
	0-2 3.864				7.36-1			70+1 7.37-1	
	0-2 6.70				7.39-1				
1.5	0-1 2.40	+2 7.64 - 1							29
2 0	0-2 5.70-	.1 3 37 <u>1</u> 0	2 50-2	1 10±0	2.19+0	3 (10-2 2 1	10+0 1.82+0	33
	0-2 3.70-				1.14+0			70+0 1.05+0	33
	0-2 1.00				1.07+0			00+1 1.04+0	
	0-2 2.40				8.93-1			20+1 9.85-1	
	0-2 5.50					, , ,			
5 0	0-2 7.00	LN 7 22 <u>-</u> 1	6 00-2	1 //0±1	7.25-1	7 (00-2-2-/	40+1 7.14-1	34
	0-2 4.00				7.76-1			00+1 7.48-1	34
			2.00-1					00+2 8.39-1	
	0-1 9.30				9.30-1			30+3 8.82-1	
2 0	0-2 1.80	-1 1 NS + 0	2.50-2	4 60-1	9.14-1	3 (00-2 9 1	50-1 8.23-1	51
	0-2 1.65							70+0 7.36-1	31
			5.50-2					40+1 7.25-1	
			7.00-2						
9	Fluori	ne	Fluoresce	nce yie	ald = 0.	013			
5.0	0-1 1.10	⊦ 3 8.29-1	8.45-1	1.45+3	7.72-1	1.0	00+0 1.5	50+3 7.53-1	110
3.0	00-1 3.14	+2 4.48 - 1	3.50-1	4,15+2	. 4.72 - 1	4.(00-1 5.	14+2 4.92-1	116
	0-1 7.54				6.60-1			27+3 7.41-1	
	0-1 1.49				8.72-1			87+3 9.39-1	
	0+0 1.94				9.76-1			06+3 9.82-1	
	0+0 2.02-				9.27-1			83+3 8.98-1	
					_	-			

Table 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	$\sigma^{ m Exper}$	<i>E</i> ₁	$\sigma^{ m Exper}$	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
10	Neon		Fluoresc	ence vie	1d = 0.0	18			
10	Neon			_		10			
	2 1.41+0			2 2.67+0			-2 4.68+0		46
	2 7.83+0		9.70-	2 1.79+1	9.45-1	1.16	-1 3.29+1	9.51-1	
1.35-	1 5.40+1	9.66-1							
5.00+	0 1.40+3	1.00+0							58
1.25-	1 3.20+1	7.27-1	1.50-	1 5.70+1	7.47-1	2.00	-1 1.25+2	7.50-1	82
2.50-	1 2.09+2	7.47-1		1 3.18+2		4.00	-1 5.63+2	8.56-1	
5.00-	1 7.04+2	7.94-1	6.00-	1 8.37+2	7.74-1		-1 9.60+2		
8.00-	1 1.05+3	7.64-1	9.00-	1 1.20+3	8.10-1	1.00-	HO 1.30+3	8.31-1	
1.104	0 1.42+3	8.73-1	1.20	0 1.50+3	8.92-1				
11	Sodium		Fluores	ence yie	1d = 0.0	23			
2.00-	2 8.00-3	1.72+0	2.50-	-2 2.50-2	1.38+0	3.00	-2 6.00-2	1.21+0	101
	2 1.20-1			2 2.50-1			-2 6.00-1		
6.00-	2 8.50-1	6.86-1	6.50-	2 1.30+0	7.54-1				
12	Magnesiu	m	Fluoresc	ence yie	1d = 0.0	3			
6.00-	2 3.50-1	6.64-1	1.00-	1 2.80+0	6.78-1	1.50	-1 1.20+1	6 95-1	9
	1 2.80+1			1 9.40+1			-1 1.80+2		-
	1 2.30+2					,,,,,		,,,,,	
2 50-	-2 4.31-3	7 40-1	3 00-	·2 1.53-2	8 80-1	<i>4</i> 00.	-2 7.34 - 2	0 12-1	11
	2 2.27-1			·2 4.45-1			-2 7.54-2 -2 8.52 - 1		11
	2 1.85+0			2 2.41+0			-1 3.46+0		
	1 4.25+2			1 4.49+2			-1 5.06+2		
	1 5.77+2			0 6.42+2			+0 7.27+2		
	0 7.73+2			0 8.79+2			+0 9.46+2		
	-0 1.03+3			0 1.07+3			HO 1.14+3		
1 25-	1 8.30+0	Q Q5_1	1 50-	1.50+1	Q 60_1	1 75	1 2 6011	0 17 1	10
	1 4.00+1		1.50	1 1.5071	0.09-1	1.75	-1 2.60+1	9.1/-1	12
3.00+	-0 1.10+3	8.39-1							94
2 00-	2 6.00-4	6 70_1	2 50-	.2 / 00.2	6.87-1	3 00	-2 1.20-2	6 00 1	101
	2 3.00-4			·2 4.00=3 •2 6 NN≖9	7 46-1		-2 1.20-2 -2 1.00-1		101
	2 2.00-2			2 5.00-2		4.50.	-Z 1,00-1	7.00-1	
13	Aluminum		Fluoresc	ence yie	1d = 0.0	39			
6 00=	2 1.70-1	7 05-1	1 00	·1 1.50+0	7 21 1	1 20	1 2 0010	6 7/ 1	•
	·2 1.70-1 ·1 5.60+0			·1 1.50+0 ·1 1.50+1			-1 3.90+0 -1 5.50+1		9
	1 3.60+0			·1 1.30+1 ·1 2.30+2		3.00	-1 3.3U+I	7.34-1	
	0 1.00+3								10
									10
2.50-	2 1.43-3				7.87-1	4.00	-2 2.98-2	8.98-1	11
	2 9.19-2			2 2.11-1				8.58-1	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

$\boldsymbol{E_1}$	$\sigma^{ ext{Exper}}$	$\sigma^{ m Exper}$	E_1	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
8 NO.	-2 6 97	-1 8.31-1	9 00	-2 1 06	+0 7.83-1	1 00)-1 1.54+	0 7 50-1	
		+2 8.58-1			+2 8.24-1)-1 3.44+		
		+2 8.19-1			+2 8.24-1		0+0 5.46+		
		+2 8.45-1			+2 8.43-1		0+0 5.40+ 0+0 7.19+		
		+2 8.60-1			+2 8.87-1		0+0 8.80+		
		+2 9.21-1	1.50	710 0.20	12 0.07-1	1.00	710 0.001	2 9.07-1	
3.00	-2 1.30	-2 2.04+0	5.00	-2 1.20	-1 1.17+0	8.00	0-2 7.40-	1 8.83-1	12
1.00	-1 1.50	+0 7.31-1	1.25	-1 4.80	+0 1.01+0	1.50	0-1 7.80+	0 8.60-1	
1.75	-1 1.60	+1 1.05+0	2.00	0-1 2.90	+1 1.24+0				
		-2 9.49-1			-2 8.36-1		0-2 2.00-		13
		-1 9.12-1			-1 8.39-1		0-2 4.20-		
		-1 7.75-1			-1 7.52-1	9.00	0-2 1.00+	0 7.38-1	
9.60	-2 1.11	+0 6.35-1	1.00)-1 1.54	+0 7.50-1				
		-3 1.04+0			-3 9.58-1		0-2 3.10-		17
		-1 1.17+0			-1 9.12-1		0-2 4.40-		
		-1 9.06-1	9.00	7-2 1.20	+0 8.86-1	1.2	0-1 3.60+	0 8.80-1	
1.40	-1 6.20	+0 8.69-1	1.80)-1 1.00	+1 5.98-1	1.9	0-1 1.40+	1 7.04-1	
2.00	-1 1.90	+1 8.13-1							
8.00	-2 5.60	-1 6.68-1	9.00	-2 8.40	-1 6.20-1	1.0	0-1 1.40+	0 6.82-1	22
1.10	-1 2.00	+0 6.76-1	1.20)-1 2.80	+0 6.84-1	1.3	0-1 4.00+	0 7.31-1	
1.40	-1 4.60	+0 6.45-1	1.50)-1 6.00	+0 6.61-1	1.6	0-1 7.20 +	0 6.37-1	
		+0 5.77-1	1.80	0-1 1.00	+1 5.98-1	1.9	0-1 1.20+	1 6.03-1	
2.00	-1 1.40	+1 5.99-1							
		+0 7.75-1	1.00)-1 1.49	+0 7.26-1	1.4	0-1 4.67+	0 6.55-1	25
1.80	-1 1.06	+1 6.34-1							
		-4 1.45+0			-4 1.32+0		0-2 2.02-		45
		-3 1.03+0			-2 1.01+0		0-2 3.26-		
		-1 1.04+0			-1 9.41-1		0-2 4.33-		
		-1 8.74-1			+0 8.42-1		0-1 1.68+		
		+0 7.95-1			+0 8.46-1		0-1 6.44+		
		+0 7.64-1			+0 8.08-1		9-1 1.22+		
		+1 7.66-1			+1 7.40-1		0-1 3.11+		
		+1 6.81-1			+1 6.77-1		7-1 7.81+		
		+1 6.23-1			+2 6.84-1		0-1 1.70+		
		+2 6.82-1			+2 6.78-1		6-1 3.50+		
		+2 6.64-1			+2 6.59-1		2+0 4.84+		
		+2 6.51-1			+2 6.39-1		3+0 5.76+		
		+2 6.39-1			+2 6.39-1		3+0 6.50+		
		+2 6.42-1			+2 6.45-1		4+0 7.05+		
		+2 6.54-1			+2 6.59-1		5+0 7.54+		
		+2 6.69-1			+2 6.74-1		5+0 7.96+		
2.75	+0 8.09	+2 6.89-1	2.8	5+0 8.23	+2 6.98-1	2.9	6+0 8.37+	-2 7.07 - 1	
		-4 1.32+0			-3 1.35+0			3 1.20+0	51
		-3 1.25+0			-3 1.18+0			2 1.16+0	
		-2 9.42-1	4.0	0-2 3.80	-2 1.14+0	4.5	0-2 7.00-	2 1.14+0	
5.00	-2 1.20	-1 1.17+0	5.5	0-2 1.70	-1 1.05+0				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_{i}	σ^{Exper}	σExper	E_1	σ ^{Exper}	σ^{Exper}	E_1	σ ^{Exper}	σ^{Exper}	
	_		-						
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
7 50	1 0 0610	6 24 1	1 001	0 / 7010	7 01 1	1 05	10 (1610	7 5/ 1	7.5
	-1 2.96+2 +0 6.98+2			0 4.78+2			+0 6.16+2		75
	+0 0.96+2 +0 9.93+2			0 8.10+2 0 9.98+2			+0 9.47+2 +0 9.73+2		
3.00	10 7.7512	0.50 1	5.501	0 7.7012	. 0.37-1	4.00	TO 9.73TZ	. 0.24-1	
2.00	-1 2.28+1	9.75-1							88
0.00	10 1 0010	0 10 1							
3.00	+0 1.09+3	9.18-1							94
2.50	+0 9.55+2	8.28-1	3.00+	0 9.88+2	8.33-1	5.00	+0 9.16+2	8.05-1	97
7.50	+0 7.80+2	7.81-1	9.00+	0 7.19+2	7.81-1		+0 6.83+2		
	-2 8.00-6			2 2.00-5			-2 5.00-5		101
	-2 9.00-5			2 1.60-4			-2 3.50-4		
	-2 9.00-4			2 1.80-3			-2 3.70-3		
	-2 6.00-3			2 1.20-2			-2 2.40-2		
	-2 3.70-2		5.00-	2 6.50-2	6.32-1	5.50	-2 1.20-1	1 /.41-1	
6.00	-2 2.00-1	0.29-1							
3,26	-1 9.43+1	1.02+0	3.60-	1 1.20+2	1.02+0	3.85	-1 1.40+2	1.01+0	110
	-1 2.44+2			0 6.67+2					110
	-1 2.96+2			0 4.78+2		1.25	+0 6.16+2	7.54-1	117
	+0 6.98+2			0 8.10+2			+0 9.47+2		
	+0 9.69+2			0 9.93+2		3.94	+0 9.92+2	8.39-1	
	+0 8.79+2			0 7.33+2		1.22	+1 6.13+2	2 7.83-1	
	+1 4.69+2			1 3.94+2		3.01	+1 3.42+2	8.00-1	
3.56	+1 2.97+2	7.86-1	3.96+	1 2.77+2	7.94-1				
3.00	-1 6.85+1	9.14-1	6.00-	1 3.00+2	9.04-1	1.00	+0 6.05+2	9.12-1	149
						2,00		. , 1	143
14	Silcon		Fluoresc	ence yie	1d = 0.0)5			
7 50		~ ~							
	-1 2.47+2			0 3.95+2			+0 4.85+2		75
	+0 6.35+2			0 7.68+2			+0 8.61+2		
3.00	+0 9.34+2	8.75-1	3.50+	0 9.55+2	8./5-1	4.00	+0 9.60+2	2 8.74-1	
3 00-	+0 1.00+3	9 37-1							94
3.00	.0 1.00.3	J. J. I							94
2.50	-2 3.00-4	4.91-1	3.00-	2 1.30-3	5.60-1	3.50	-2 5.00-3	7.97-1	101
	-2 1.40-2				1.29+0		-2 1.40-1		101
15	Phosphor	us	Fluoresc	ence yie	e1d = 0.0	63			
1	+0 5.27+2	9 12-1	1 504	0 5.51+2	8 91_1	1 60	+0 6.12+2	0 22-1	122
	+0 6.33+2			0 5.31+2			+0 6.12+2 +0 6.95+2		122
	+0 7.25+2		1.001	0.7072	. J.6J-1	1.90	10 0.33TZ	. J.44-1	
2.00		J.20 I							
6.00	-1 1.59+2	1.01+0	8.00-	1 3.49+2	1.29+0	1.00	+0 4.56+2	1.19+0	123
	+0 5.59+2			0 6.72+2			+0 7.92+2		140
	+0 9.12+2			0 9.24+2			+0 9.72+2		
	+0 9.66+2			0 9.28+2					

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

$\boldsymbol{E_1}$	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	\boldsymbol{E}_{1}	$\sigma^{ m Exper}$	σ^{Exper}	E_{I}	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	. σ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
1 004	-0 4.81+2	1 25+0	1 30+	0 6.50+2	1 22+0	1 90-	+0 8.46+2	1 12+0	156
-	0 8.54+2			0 9.73+2			+0 1.01+3		250
	0 1.00+3			0 9.69+2			+0 1.09+3		
	0 1.13+3		5.00+	0 1.13+3	1.11+0				
16	Sulfur		Fluoresc	ence yie	1d = 0.0	78			
8.30-	1 1.80+2	8.50-1	1.58+	0 5.40+2	1.02+0	2.56	+0 7.50+2	2 9.64-1	66
3.28+	-0 1.08+3	1.24+0							
3.00+	-0 8.46+2	1.00+0							94
	-0 4.62+2			0 4.56+2			+0 4.91+2		122
	0 5.26+2		1.80+	0 5.58+2	9.29-1	1.90	+0 5.65+2	2 8.97-1	
2.00+	-0 5.97+2	9.08-1							
6.00-	1 1.55+2	1.41+0	8.00-	1 2.95+2	1.49+0	1.00	+0 4.04+2	2 1.39+0	123
	0 5.30+2			0 6.43+2			+0 7.45+2		
1.80+	0 8.09+2	1.35+0	2.00+	0 8.77+2	1.33+0	2.20	+0 9.68+2	2 1.37+0	
2.40+	0 9.84+2	1.31+0	2.60+	0 1.03+3	1.31+0				
1.00+	0 3.14+2	1.08+0	1.30+	-0 4.57+2	1.08+0	1.90	+0 6.76+2	2 1.07+0	156
2.25+	0 7.28+2	1.01+0	2.554	0 8.23+2	1.06+0	2.80	+0 8.17+2	2 1.00+0	
3.004	0 8.98+2	1.07+0	3.50+	0 9.17+2	1.03+0	4.00	+0 1.02+3	3 1.11+0	
4.50+	1.12+3	1.19+0	5.00+	0 1.13+3	1.19+0				
17	Chlorine	:	Fluoresc	ence yie	1d = 0.0	97			
9.50-	1 2.60+2	1.27+0							76
3.004	0 6.95+2	9.21-1							94
1.404	0 3.63+2	9.69-1	1.50+	0 3.74+2	9.14-1	1.60	+0 4.02+2	2 9.09-1	122
1.704	0 4.23+2	8.92-1	1.804	-0 5.25+2	1.04+0	1.90	+0 5.15+2	2 9.66-1	
2.004	10 5.34+2	9.54-1							
8.00-	-1 1.63+2	2 1.11+0	1.004	-0 2.64+2	1.18+0	1.20	+0 2.80+	2 9.31-1	123
1.404	HO 3.31+2	8.84-1	1.604	0 4.18+2	9.45-1	1.80	+0 4.80+	2 9.52-1	
				0 5.46+2		2.40	+0 5.33+	2 8.17-1	
2.601	+O 5.71+2	8.26-1	2.804	0 5.53+2	7.63-1				
				0 4.00+2				2 1.14+0	156
				0 7.22+2			+0 7.62+		
				0 8.42+2		4.00	+0 9.35+	2 1.10+0	
4.50	FU 9.86+2	2 1.12+0	5.004	1.02+3	1.14+0				
18	Argon		Fluores	ence yie	eld = 0.1	.18			
								2 9.00-1	40
3.004	HO 6.10+2	9.22-1	3.504	0 6.80+2	9.38-1	4.00	+0 6.90+	2 8.95-1	
	HO 7.60+2								

 $\textbf{TABLE 2. \textit{K}-shell x-ray production by protons in target elements from beryllium to uranium}^{a,b} \\ \textbf{—} Continued$

E_1	$\sigma^{ m Exper}$	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
6.80-	2 1.85-2	1.37+0	7.70-	2 3.01-2	1.14+0	8.70-	2 5.54-2	1.12+0	46
9.70-	2 1.04-1	1.25+0	1.06-	1 1.48-1	1.17+0	1.16-	1 2.27-1	1.20+0	
1.26-	1 3.05-1	1.13+0	1.35-	1 4.01-1	1.10+0				
	0 3.19+2			0 4.57+2			0 5.53+2		48
3.00+	0 6.38+2	9.64-1	3.50+	0 7.25+2	1.00+0	4.00+	0 7.61+2	9.87-1	
4.50+	0 7.99+2	9.96-1	5.00+	0 8.68+2	1.05+0				
3.00+	0 7.03+2	1.06+0							65
2.00+	0 5.23+2	1.12+0							74
1.25-	1 3.12-1	1.19+0	1.50-	1 5.92-1	1.05+0	2.00-	1 1.59+0	9.20-1	82
2.50-	1 3.57+0	9.21-1	3.00-	1 6.51+0	9.03-1	4.00-	1 1.58+1	8.83-1	
5.00-	1 3.00+1	8.83-1	6.00-	1 4.79+1	8.72-1	7.00-	1 6.85+1	8.58-1	
8.00-	1 9.35+1	8.68-1	9.00-	1 1.18+2	8.56-1	1.00+	0 1.40+2	8.29-1	
19	Potassiu	m	Fluoresc	ence yie	ld = 0.1	4			
9.50-	1 1.21+2	1.06+0							76
3.00+	0 5.35+2	9.38-1							94
1.40+	0 2,20+2	9.46-1	1.50+	0 2.27+2	8.75-1	1.60+	0 2.48+2	8.69-1	122
	0 2.70+2			0 3.43+2			0 3.55+2		
	0 3.72+2								
6.00-	1 4.04+1	1.06+0	8.00-	1 8.65+1	1.11+0	1.00+	0 1.23+2	9.73-1	123
1.20+	0 1.79+2	1.00+0	1.40+	0 2.46+2	1.06+0	1.60+	0 2.98+2	1.04+0	
1.80+	0 3.41+2	1.02+0	2.00+	0 4.31+2	1.12+0	2.20+	0 5.22+2	1.22+0	
2.40+	0 5.56+2	1.19+0	2.60+	0 5.73+2	1.13+0		0 6.04+2		
1.00+	0 1.57+2	1.24+0	1.30+	0 2.45+2	1.19+0	1.90+	0 3.93+2	1.09+0	156
2.25+	0 4.62+2	1.05+0	2.55+	0 5.26+2	1.06+0	2.80+	0 5.66+2	1.05+0	
3.00+	0 6.30+2	1.11+0	3.50+	0 6.75+2	1.06+0	4.00+	0 7.24+2	1.06+0	
4.50+	0 7.90+2	1.09+0	5.00+	0 8.34+2	1.11+0				
20	Calcium		Fluoresc	ence yie	1d = 0.1	63			
	0 2.34+2			0 3.95+2	8.17-1		0 4.94+2		20
	0 5.76+2			0 5.93+2		7.00+	0 6.32+2	8.60-1	
8.00+	0 6.29+2	8.44-1	9.00+	0 6.35+2	8.51-1	1.00+	1 6.12+2	8.25-1	
1.10+	1 6.17+2	8.42-1		1 6.18+2		1.30+	1 6.17+2	8.71-1	
1.65+	1 5.39+2	8.19-1	2.00+	1 5.46+2	8.96-1	2.50+	1 4.49+2	8.21-1	
3.00+	0 4.85+2	1.00+0	5.00+	0 7.47+2	1.11+0	7.00+	0 8.12+2	1.10+0	94
9.00+	0 7.95+2	1.07+0		1 7.76+2					•
	1 1.09+1			1 1.58+1			1 1.95+1		98
	1 2.55+1			1 3.16+1			1 3.77+1		
	1 4.36+1			1 5.07+1	7.82-1	9.00-	1 5.87+1	7.93-1	
	1 6.61+1			0 7.50+1		1.05+	0 8.41+1	8.11-1	
	0 9.47+1			0 1.01+2			0 1.10+2		
1.25+	0 1.17+2	7.99-1	1.30+	0 1.29+2	8.20-1	1.35+	0 1.38+2	8.19-1	

 $\textbf{TABLE 2. \textit{K}-shell x-ray production by protons in target elements from beryllium to uranium}^{a,b} \\ \textbf{—Continued}$

.40+0 1.44+2 8.00-1	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	\boldsymbol{E}_1	σ^{Exper}	$\sigma^{ m Exper}$	E_1	$\sigma^{ m Exper}$	σ^{Exper}	_
1.55+0 1.75+2 8.21-1 1.60+0 1.89+2 8.42-1 1.65+0 1.97+2 8.35-1 1.70+0 2.00+2 8.11-1 1.75+0 2.16+2 8.39-1 1.80+0 2.23+2 8.31-1 1.95+0 2.51+2 8.05-1 1.90+0 2.66+2 8.58-1 1.90+0 2.46+2 8.50-1 1.95+0 2.51+2 8.37-1 1.00+0 2.66+2 8.58-1 1.90+0 2.46+2 8.50-1 1.95+0 2.51+2 8.37-1 1.00+0 2.66+2 8.58-1 1.90+0 2.46+2 8.50-1 1.95+0 2.51+2 8.37-1 1.00+0 2.66+2 8.58-1 1.95+0 2.51+2 8.37-1 1.00+0 2.66+2 8.58-1 1.90+0 2.60+2 2.51-1 3.16+0 7.96-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 3.16+0 7.99-1 3.25-1 3.16+0 3	MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
1.55+0 1.75+2 8.21-1 1.60+0 1.89+2 8.42-1 1.65+0 1.97+2 8.35-1 1.70+0 2.00+2 8.11-1 1.75+0 2.16+2 8.39-1 1.80+0 2.23+2 8.31-1 1.95+0 2.51+2 8.05-1 1.90+0 2.66+2 8.58-1 1.90+0 2.46+2 8.50-1 1.95+0 2.51+2 8.37-1 1.00+0 2.66+2 8.58-1 1.90+0 2.46+2 8.50-1 1.95+0 2.51+2 8.37-1 1.00+0 2.66+2 8.58-1 1.90+0 2.46+2 8.50-1 1.95+0 2.51+2 8.37-1 1.00+0 2.66+2 8.58-1 1.95+0 2.51+2 8.37-1 1.00+0 2.66+2 8.58-1 1.90+0 2.60+2 2.51-1 3.16+0 7.96-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 3.16+0 7.99-1 3.25-1 3.16+0 7.99-1 3.25-1 3.16+0 3.16+0 7.99-1 3.25-1 3.16+0 3	1 401	LO 1 6613	0 00-1	1 6516	n 1 EE±9	0 11_1	1 501	n 1 6713	0 0 06_1	
.70+0 2.00+2 8.11-1										
.85+0 2.25+2 8.06-1										
.00+0 2.66+2 8.58-1 .00-1 6.30-1 9.51-1 2.25-1 8.10-1 7.73-1 3.25-1 3.16+0 7.96-1 5.50-1 3.72+0 7.29-1 3.75-1 5.00+0 7.80-1 4.00-1 5.88+0 7.43-1 1.06+0 7.96-1 3.72+0 7.29-1 3.75-1 5.00+0 7.80-1 4.00-1 5.88+0 7.43-1 4.75-1 1.10+1 8.14-1 1.00-1 1.28+1 8.12-1 .00-1 2.64+1 9.92-1 8.00-1 5.66+1 1.01+0 1.00+0 9.16+1 9.79-1 1.20+0 1.40+2 1.03+0 1.40+0 1.81+2 1.01+0 1.60+0 2.23+2 9.93-1 2.00+0 2.93+2 9.45-1 2.20+0 3.73+2 1.07+0 2.80+0 4.56+2 1.00+0 2.80+0 4.56+2 1.00+0 2.50+0 3.85+2 1.07+0 2.55+0 4.43+2 1.07+0 2.80+0 4.81+2 1.06+0 2.50+0 3.85+2 1.07+0 2.55+0 4.43+2 1.07+0 2.80+0 4.81+2 1.06+0 4.00+0 6.47+2 1.08+0 5.00+0 7.47+2 1.11+0 1.00+0 6.47+2 1.08+0 5.00+0 7.01+2 1.10+0 5.00+0 7.47+2 1.11+0 1.03+0 3.33+0 4.85+2 1.08+0 5.60+2 1.00+0 3.33+0 4.85+2 1.08+0 5.67+0 2.14+2 1.13+0 2.00+0 2.68+2 1.07+0 2.33+0 3.17+2 1.03+0 6.67+0 3.79+2 1.05+0 3.00+0 4.44+2 1.09+0 3.33+0 4.85+2 1.08+0 6.67+0 3.79+2 1.10+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 5.00-1 3.72+1 9.19-1 8.50-1 4.391+ 9.17-1 9.00-1 4.797+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.45-1 1.50+0 1.48+2 9.30-1 1.55+0 1.69+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.66-1 1.55-1 1.320-0 9.19-1 3.00-1 1.87+0 9.48-1 3										
.75-1 1.71+0 7.75-1 3.00-1 2.38+0 7.91-1 3.25-1 3.16+0 7.96-1 2.51-1 3.72+0 7.29-1 3.75-1 5.00+0 7.80-1 4.00-1 5.88+0 7.43-1 4.50-1 8.86+0 7.73-1 1.10+1 8.14-1 1.00-1 1.28+1 8.12-1				1.501	2.4012	0.50-1	1.75.	0 2.3112	. 0.57-1	
.50-1 3.72+0 7.29-1 3.75-1 5.00+0 7.80-1 4.75-1 1.10+1 8.14-1 2.5-1 7.62+0 7.95-1 4.50-1 8.86+0 7.73-1 4.75-1 1.10+1 8.14-1 4.50-1 1.28+1 8.12-1 4.50-1 8.86+0 7.73-1 4.75-1 1.10+1 8.14-1 4.75-1 1.28+1 8.12-1 4.50-1 8.86+0 7.73-1 4.75-1 1.10+1 8.14-1 4.75-1 1.28+1 8.12-1 4.50-1 8.86+0 7.73-1 4.75-1 1.10+1 8.14-1 4.75-1 1.28+1 8.12-1 4.75-1 1.28+1 8.12-1 4.75-1 1.28+1 8.12-1 4.75-1 1.28+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.10+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.10+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.10+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.28+1 8.14-1 4.75-1 1.28+1 9.93-1 4.28+1 9.93-1 4.28+1 9.93-1 4.28+1 9.93-1 4.28+1 9.93-1 4.28+1 9.93-1 4.28+1 9.93-1 4.28+1 9.93-1 4.28+1 9.84-1 4.28+1 9.84-1 4.28+1 9.84-1 4.28+1 9.84-1 4.28+1 9.84-1 4.28+1 9.38+1 9.84-1 4.28+1 9.38+1 9.84-1 4.28+1 9.38+1 9.84-1 4.28+1 9.38	2.00	-1 6.30-1	9.51-1	2.25-	1 8.10-1	7.73-1	2.50-	1 1.32+0	8.47-1	106
.25-1 7.62+0 7.95-1	2.75	-1 1.71+0	7.75-1	3.00-	1 2.38+0	7.91-1	3.25-	1 3.16+0	7.96-1	
.00-1 1.28+1 8.12-1 .00-1 2.64+1 9.92-1 8.00-1 5.66+1 1.01+0 1.60+0 9.16+1 9.79-1 2.0+0 1.40+2 1.03+0 1.40+0 1.81+2 1.01+0 1.60+0 2.23+2 9.93-1 2.0+0 2.61+2 9.73-1 2.00+0 2.93+2 9.45-1 2.20+0 3.73+2 1.07+0 2.60+0 4.24+2 1.10+0 2.60+0 4.24+2 1.00+0 2.80+0 4.56+2 1.00+0 2.80+0 4.56+2 1.00+0 2.55+0 4.83+2 1.07+0 2.55+0 4.83+2 1.07+0 2.55+0 4.83+2 1.07+0 2.80+0 4.81+2 1.06+0 0.00+0 5.09+2 1.05+0 3.50+0 5.69+2 1.04+0 4.00+0 6.47+2 1.08+0 0.50+0 7.01+2 1.10+0 5.00+0 7.47+2 1.11+0	3.50	-1 3.72+0	7.29-1	3.75-	1 5.00+0	7.80-1	4.00-	1 5.88+0	7.43-1	
.00-1 2.64+1 9.92-1 8.00-1 5.66+1 1.01+0 1.00+0 9.16+1 9.79-1 2.20+0 1.40+2 1.03+0 1.40+0 1.81+2 1.01+0 1.60+0 2.23+2 9.93-1 8.00+0 2.61+2 9.73-1 2.00+0 2.93+2 9.45-1 2.20+0 3.73+2 1.07+0 2.60+0 4.24+2 1.00+0 2.80+0 4.56+2 1.00+0 2.80+0 4.56+2 1.00+0 2.55+0 3.85+2 1.07+0 2.55+0 4.43+2 1.07+0 2.80+0 4.81+2 1.06+0 4.00+0 5.09+2 1.05+0 3.50+0 5.69+2 1.04+0 4.00+0 6.47+2 1.08+0 5.09+2 1.05+0 3.50+0 5.69+2 1.04+0 4.00+0 6.47+2 1.08+0 5.00+0 7.01+2 1.10+0 5.00+0 7.47+2 1.11+0 5.00+0 7.47+2 1.11+0 5.00+0 5.97+2 1.23+0 4.00+0 5.76+2 1.07+0 2.33+0 3.17+2 1.03+0 6.67+0 3.79+2 1.05+0 3.00+0 5.69+2 1.10+0 4.33+0 6.05+2 1.00+0 6.67+0 5.97+2 1.22+0 4.00+0 5.76+2 1.10+0 4.33+0 6.05+2 1.10+0 6.67+0 6.97+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 5.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.13-1 5.50-1 2.14+1 9.16-1 7.00-1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 5.50+0 1.69+2 9.30-1 1.45+0 1.69+2 9.30-1 1.45+0 1.69+2 9.30-1 1.55+0 1.69+2 9.30-1 1.45+0 1.69+2 9.30-1 1.55+0 1.59+2 9.30-1 1.45+0 1.69+2 9.30-1 1.55+0 1.59+2 9.20-1 1.45+0 1.69+2 9.30-1 1.55+0 1.59+2 9.30-1 1.55+0 1.59+2 9.20-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 5.00+0 2.30+2 9.19-1 5.00-1 3.20+0 9.43-1 3.75-1 4.77+0 9.71-1 4.00-1 4.07+0 7.66-1 5.50-1 3.20+0 9.43-1 3.75-1 4.77+0 9.71-1 4.00-1 4.07+0 7.66-1 5.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.9	4.25	-1 7.62+0	7.95-1	4.50-	1 8.86+0	7.73-1	4.75-	1 1.10+1	l 8.14-1	
.20+0 1.40+2 1.03+0	5.00	-1 1.28+1	8.12-1							
.80+0 2.61+2 9.73-1 2.00+0 2.93+2 9.45-1 2.20+0 3.73+2 1.07+0 2.60+0 4.24+2 1.10+0 2.60+0 4.24+2 1.00+0 2.80+0 4.56+2 1.00+0 2.80+0 4.56+2 1.00+0 2.80+0 4.56+2 1.00+0 2.80+0 4.56+2 1.00+0 2.80+0 4.56+2 1.00+0 2.50+0 3.85+2 1.07+0 2.55+0 4.43+2 1.07+0 2.80+0 4.81+2 1.06+0 4.00+0 5.09+2 1.05+0 3.50+0 5.69+2 1.04+0 4.00+0 6.47+2 1.08+0 5.00+0 7.01+2 1.10+0 5.00+0 7.47+2 1.11+0 5.00+0 7.47+2 1.11+0 7.00+0 6.47+2 1.08+0 7.01+2 1.10+0 5.00+0 7.47+2 1.11+0 7.00+0 6.83+1 9.84-1 1.33+0 1.29+2 1.01+0 6.67+0 2.14+2 1.13+0 2.00+0 2.68+2 1.07+0 2.33+0 3.17+2 1.03+0 6.67+0 3.79+2 1.05+0 3.00+0 4.44+2 1.09+0 3.33+0 4.85+2 1.08+0 6.67+0 5.97+2 1.22+0 4.00+0 5.67+2 1.10+0 4.33+0 6.05+2 1.10+0 6.67+0 6.37+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 6.67+0 6.99+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 6.67+0 6.99+2 1.11+0 7.00+1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 9.50-1 2.14+1 9.16-1 7.00-1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 9.00-1 3.72+1 9.19-1 8.50-1 4.33+1 9.17-1 9.00-1 4.97+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.10+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 1.25+0 1.06+2 9.48-1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 1.55+0 1.57+2 9.40-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.45+0 1.40+2 9.45-1 1.50+0 1.99+2 9.30-1 1.85+0 1.99+2 9.30-1 1.85+0 1.59+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00+0 2.30+2 9.19-1 1.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 3.00-1 4.75-1 7.33+0 7.92-1 1.00-1 4.07+0 7.64-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1	6.00	-1 2.64+1	9.92-1	8.00-	1 5.66+1	1.01+0	1.00+	0 9.16+1	1 9.79-1	123
.40+0 4.24+2 1.10+0	1.20-	+0 1.40+2	1.03+0	1.40+	0 1.81+2	1.01+0	1.60+	0 2.23+2	2 9.93-1	
.00+0 1.16+2 1.24+0							2.20+	0 3.73+2	2 1.07+0	
.25+0 3.85+2 1.07+0 2.55+0 4.43+2 1.07+0 4.00+0 6.47+2 1.06+0 0.00+0 5.09+2 1.05+0 3.50+0 5.69+2 1.04+0 4.00+0 6.47+2 1.08+0 5.00+0 7.01+2 1.10+0 5.00+0 7.47+2 1.11+0 1 Scandium Fluorescence yield = 0.188 .67-1 2.37+1 9.44-1 1.00+0 6.83+1 9.84-1 2.33+0 3.17+2 1.03+0 6.67+0 2.14+2 1.13+0 2.00+0 2.68+2 1.07+0 2.33+0 3.17+2 1.03+0 6.67+0 3.79+2 1.05+0 3.00+0 4.44+2 1.09+0 3.33+0 4.85+2 1.08+0 6.67+0 5.97+2 1.22+0 4.00+0 5.76+2 1.10+0 4.33+0 6.05+2 1.10+0 6.67+0 6.39+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 6.7+0 6.99+2 1.11+0 .30-1 4.20+1 9.43-1 1.58+0 1.79+2 1.04+0 2.56+0 3.21+2 9.30-1 66 1.28+0 4.71+2 1.06+0 .00-1 9.88+0 9.11-1 5.50-1 1.32+1 9.13-1 6.00-1 1.72+1 9.23-1 7.50-1 3.72+1 9.19-1 8.50-1 4.33+1 9.17-1 9.00-1 4.97+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.10+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 1.25+0 1.06+2 9.48-1 1.30+0 1.65+2 9.34-1 1.50+0 1.32+2 9.50-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.50+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00+0 1.32+0 9.43-1 3.75-1 4.17+0 9.48-1 3.25-1 2.15+0 8.20-1 6.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.66+1 6.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.66+1 6.25-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.66+1 6.25-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.66+1 6.25-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.66+1 6.25-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.66+1 6.25-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.66+1 4.75-1 7.33+0 7.92-1	2.40-	+0 4.24+2	1.10+0	2.60+	0 4.24+2	1.00+0	2.80+	0 4.56+2	2 1.00+0	
.00+0 5.09+2 1.05+0 5.00+0 5.00+0 5.00+0 6.47+2 1.08+0 5.00+0 7.01+2 1.10+0 5.00+0 7.47+2 1.11+0 1 Scandium Fluorescence yield = 0.188 .67-1 2.37+1 9.44-1 1.00+0 6.83+1 9.84-1 2.33+0 1.29+2 1.01+0 6.67+0 2.14+2 1.13+0 2.00+0 2.68+2 1.07+0 2.33+0 3.17+2 1.03+0 3.39+0 4.85+2 1.08+0 4.07+0 5.97+2 1.22+0 4.00+0 5.76+2 1.10+0 4.33+0 6.05+2 1.10+0 6.67+0 6.37+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 6.67+0 6.99+2 1.11+0 .30-1 4.20+1 9.43-1 1.58+0 1.79+2 1.04+0 2.56+0 3.21+2 9.30-1 66 1.28+0 4.71+2 1.06+0 .00-1 9.88+0 9.11-1 5.50-1 1.32+1 9.13-1 6.00-1 1.72+1 9.23-1 7.50-1 2.14+1 9.16-1 7.00-1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 9.00-1 3.72+1 9.19-1 8.50-1 4.33+1 9.17-1 9.00-1 4.97+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.10+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 1.25+0 1.06+2 9.48-1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 1.55-1 1.32+0 9.19-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 1.55-1 1.32+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.66+1 1.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1										156
1 Scandium Fluorescence yield = 0.188 .67-1 2.37+1 9.44-1	2.25	+0 3.85+2	1.07+0				2.80+	0 4.81+2	2 1.06+0	
1 Scandium Fluorescence yield = 0.188 .67-1 2.37+1 9.44-1	3.00-	+0 5.09+2	1.05+0	3.50+	0 5.69+2	1.04+0	4.00+	0 6.47+2	2 1.08+0	
.67-1 2.37+1 9.44-1	4.50	+0 7.01+2	2 1.10+0	5.00+	0 7.47+2	1.11+0				
.67+0 2.14+2 1.13+0 2.00+0 2.68+2 1.07+0 2.33+0 3.17+2 1.03+0 3.0+0 3.79+2 1.05+0 3.00+0 4.44+2 1.09+0 3.33+0 4.85+2 1.08+0 4.67+0 5.97+2 1.22+0 4.00+0 5.76+2 1.10+0 4.33+0 6.05+2 1.10+0 5.06+0 6.37+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 5.00+0 6.99+2 1.11+0 5.00+0 6.69+2 1.04+0 2.56+0 3.21+2 9.30-1 66 5.00+1 9.88+0 9.11-1 5.50-1 1.32+1 9.13-1 6.00-1 1.72+1 9.23-1 9.50-1 2.14+1 9.16-1 7.00-1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 6.00-1 3.72+1 9.19-1 8.50-1 4.33+1 9.17-1 9.00-1 4.97+1 9.17-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.10+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 1.25+0 1.06+2 9.48+1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.50-1 3.20+0 9.43-1 3.55-1 2.15+0 8.20-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 1.55-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.55-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1	21	Scandium	1	Fluoresc	ence yie	1d = 0.1	188			
.67+0 3.79+2 1.05+0 3.00+0 4.44+2 1.09+0 3.33+0 4.85+2 1.08+0 .67+0 5.97+2 1.22+0 4.00+0 5.76+2 1.10+0 4.33+0 6.05+2 1.10+0 .67+0 6.37+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 .30-1 4.20+1 9.43-1 1.58+0 1.79+2 1.04+0 2.56+0 3.21+2 9.30-1 66 .28+0 4.71+2 1.06+0 2.56+0 3.21+2 9.30-1 66 .00-1 9.88+0 9.11-1 5.50-1 1.32+1 9.13-1 6.00-1 1.72+1 9.23-1 98 .50-1 2.14+1 9.16-1 7.00-1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 9.00-1 4.97+1 9.13-1 9.00-1 4.97+1 9.13-1 9.00-1 4.97+1 9.13-1 9.00-1 4.97+1 9.13-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1	6.67	-1 2.37+1	9.44-1	1.00+	0 6.83+1	9.84-1	1.33+	0 1.29+2	2 1.01+0	64
6.67+0 5.97+2 1.22+0 4.00+0 5.76+2 1.10+0 4.33+0 6.05+2 1.10+0 5.33+0 6.81+2 1.10+0 5.33+0 6.81+2 1.11+0 5.33+0 6.81+2 1.11+0 6.67+0 6.89+2 1.11+0 5.33+0 6.81+2 1.11+0 6.67+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.81+2 1.11+0 6.82+1 1.11+0 6.82+1 1.11+0 6.82+1 1.11+0 6.82+1 1.11+0 6.82+1 1.11+0 6.82+1 1.11+0 6.82+1 1.11+0 6.82+1 1.11+0 6.82+1 1.11+0 6.82+1 1.82+1 9.30-1 6.82+1 1.82+1 9.30-1 1.82+1 9.30-1 1.82+1 9.31-1 1.82+1 9.32-1 1.82+1	1.67	+0 2.14+2	2 1.13+0	2.00+	0 2.68+2	1.07+0	2.33 1	0 3.17+2	2 1.03+0	
.67+0 6.37+2 1.11+0 5.00+0 6.69+2 1.12+0 5.33+0 6.81+2 1.11+0 .67+0 6.99+2 1.11+0 1.58+0 1.79+2 1.04+0 2.56+0 3.21+2 9.30-1 66 .30-1 4.20+1 9.43-1 1.58+0 1.79+2 1.04+0 2.56+0 3.21+2 9.30-1 66 .00-1 9.88+0 9.11-1 5.50-1 1.32+1 9.13-1 6.00-1 1.72+1 9.23-1 98 .50-1 2.14+1 9.16-1 7.00-1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 9.00-1 4.97+1 9.13-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.17-1 9.00-1 4.97+1 9.17-1 9.00-1 4.97+1 9.17-1 9.17-1 9.00-1 9.17-1 9.00-1 <t< td=""><td>2.67</td><td>+0 3.79+2</td><td>2 1.05+0</td><td>3.00+</td><td>0 4.44+2</td><td>1.09+0</td><td>3.33+</td><td>0 4.85+2</td><td>2 1.08+0</td><td></td></t<>	2.67	+0 3.79+2	2 1.05+0	3.00+	0 4.44+2	1.09+0	3.33+	0 4.85+2	2 1.08+0	
.67+0 6.99+2 1.11+0 .30-1 4.20+1 9.43-1	3.67	+0 5.97+2	2 1.22+0							
2.30-1 4.20+1 9.43-1				5.00+	0 6.69+2	1.12+0	5.33 1	0 6.81+2	2 1.11+0	
3.28+0 4.71+2 1.06+0 3.00-1 9.88+0 9.11-1 5.50-1 1.32+1 9.13-1 6.00-1 1.72+1 9.23-1 98 3.50-1 2.14+1 9.16-1 7.00-1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 3.00-1 3.72+1 9.19-1 8.50-1 4.33+1 9.17-1 9.00-1 4.97+1 9.17-1 3.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 3.10+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 3.25+0 1.06+2 9.48-1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 3.40+0 1.32+2 9.50-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 3.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 3.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 3.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 3.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 3.75-1 1.32+0 9.19-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 3.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 3.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1	5.67	+0 6.99+2	2 1.11+0							
98 3.00-1 9.88+0 9.11-1 5.50-1 1.32+1 9.13-1 6.00-1 1.72+1 9.23-1 7.50-1 2.14+1 9.16-1 7.00-1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 8.50-1 4.33+1 9.17-1 9.00-1 4.97+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.10+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 1.25+0 1.06+2 9.48-1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 1.40+0 1.32+2 9.50-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 3.00-1 3.20+0 9.43-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 3.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1	8.30	-1 4.20+1	9.43-1	1.58+	0 1.79+2	1.04+0	2.56+	0 3.21+2	2 9.30-1	66
7.50-1 2.14+1 9.16-1 7.00-1 2.62+1 9.15-1 7.50-1 3.13+1 9.13-1 9.00-1 3.72+1 9.19-1 8.50-1 4.33+1 9.17-1 9.00-1 4.97+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.10+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 1.25+0 1.06+2 9.48-1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 1.40+0 1.32+2 9.50-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 3.00-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1	3.28	+0 4.71+2	2 1.06+0							
8.50-1 3.72+1 9.19-1 8.50-1 4.33+1 9.17-1 9.00-1 4.97+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.10+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 1.25+0 1.06+2 9.48-1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 1.40+0 1.32+2 9.50-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00+0 2.30+2 9.19-1 1.00+0 2.30+2 9.19-1 1.00+0 2.30+2 9.19-1 1.00+0 2.30+2 9.19-1 1.00+0 2.30+2 9.19-1 1.00+0 2.30+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1	5.00	-1 9.88+0	9.11-1	5.50-	1 1.32+1	9.13-1	6.00-	1 1.72+	1 9.23-1	98
8.50-1 3.72+1 9.19-1 8.50-1 4.33+1 9.17-1 9.00-1 4.97+1 9.17-1 1.50-1 5.70+1 9.24-1 1.00+0 6.56+1 9.46-1 1.05+0 7.33+1 9.47-1 1.00+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 1.25+0 1.06+2 9.48-1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 1.40+0 1.32+2 9.50-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 3.00-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1				7.00-	1 2.62+1	9.15-1	7.50-	1 3.13+	1 9.13-1	
1.10+0 8.27+1 9.64-1 1.15+0 8.98+1 9.53-1 1.20+0 9.71+1 9.43-1 1.25+0 1.06+2 9.48-1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 1.40+0 1.32+2 9.50-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00+0 2.30+2 9.30+1 1.20+0 9.43-1 1.00+0 2.30+2 9.30+1 1.20+0 9.43-1 1.00+0 2.30+2 9.30+1 1.20+0 9.43-1 1.00+0 2.30+2 9.30+1 1.20+0 9.43-1 1.00+0 2.30+2 9.30+1 1.20+0 9.43-1 1.00+0 2.30+2 9.30+1 1.20+0 9.43-1 1.20+0 9.	8.00	-1 3.72+1	9.19-1							
1.25+0 1.06+2 9.48-1 1.30+0 1.15+2 9.52-1 1.35+0 1.22+2 9.38-1 1.40+0 1.32+2 9.50-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 3.00-1 8.53-1 2.50-1 9.70-1 9.66-1 106 1.75-1 1.32+0 9.19-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 2.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 2.55-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1	9.50	-1 5.70+1	1 9.24-1				1.05+	0 7.33+	1 9.47-1	
1.40+0 1.32+2 9.50-1 1.45+0 1.40+2 9.45-1 1.50+0 1.48+2 9.40-1 1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 3.00-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1	1.10	+0 8.27+1	l 9.64-1							
1.55+0 1.57+2 9.40-1 1.60+0 1.65+2 9.34-1 1.65+0 1.69+2 9.10-1 1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 3.00-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1										
1.70+0 1.80+2 9.23-1 1.75+0 1.89+2 9.25-1 1.80+0 1.99+2 9.30-1 1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 3.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1			and the second s							
1.85+0 2.06+2 9.22-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 1.00+0 2.30+2 9.19-1 1.90+0 2.15+2 9.26-1 1.95+0 2.26+2 9.37-1 2.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 106 3.75-1 1.32+0 9.19-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 3.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1										
2.00+0 2.30+2 9.19-1 2.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 106 2.75-1 1.32+0 9.19-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 3.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1										
2.00-1 3.60-1 8.62-1 2.25-1 5.70-1 8.53-1 2.50-1 9.70-1 9.66-1 106 2.75-1 1.32+0 9.19-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 3.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1				1.90+	0 2.15+2	2 9.26-1	1.95⊣	-0 2.26+	2 9.37-1	
3.75-1 1.32+0 9.19-1 3.00-1 1.87+0 9.48-1 3.25-1 2.15+0 8.20-1 3.50-1 3.20+0 9.43-1 3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 4.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1					4	0.50.5	0.50	1 0 70	1 0 // 1	100
3.75-1 4.17+0 9.71-1 4.00-1 4.07+0 7.64-1 2.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1										106
2.25-1 5.13+0 7.90-1 4.50-1 6.24+0 8.00-1 4.75-1 7.33+0 7.92-1										
.UU-1 9.82+U 9.U6-1					1 6.24+0	ל-טט-1	4./5-	1 /.33+	0 7.92-1	
	5.00	-1 9.82+0	9.06-1							

 $\textbf{TABLE 2. \textit{K}-shell x-ray production by protons in target elements from beryllium to uranium}^{a.b} \\ \textbf{—Continued}$

E_{i}	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	σ^{Exper}	σ^{Exper}	E_1	σ ^{Exper}	$\sigma^{ m Exper}$	
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
2.00-1	3.76-1	9.00-1	3.00-1	1.82+0	9.22-1	4.00-1	4.98+0	9.35-1	121
5.00-1	9.96+0	9.19-1	6.00-1	1.74+1	9.34-1	7.00-1	2.62+1	9.15-1	
3.00-1	3.53+1	8.72-1	9.00-1	4.81+1	8.88-1				
5.00-1	9.65+0	8.90-1	6.00-1	1.71+1	9.18-1	7.00-1	2.70+1	9.43-1	137
8.00-1	3.91+1	9.66-1	1.00+0	6.73+1	9.70-1	1.20+0	1.01+2	9.81-1	
1.40+0	1.39+2	1.00+0	1.60+0	1.72 + 2	9.73-1	1.80+0	2.07+2	9.68-1	
2.00+0	2.78+2	1.11+0	2.20+0	2.85+2	9.98-1	2.30+0	3.06+2	1.01+0	
2.40+0	3.14+2	9.83-1	2.50+0	3.27+2	9.74-1				
22 T:	itanium		Fluoresce	nce yie	ld = 0.2	14			
1.60+0	1.70+2	1.23+0	1.80+0	2.20+2	1.29+0	2.10+0	2.60+2	1.20+0	5
2.30+0	3.30+2	1.33+0	2.70+0	3.90+2	1.28+0	2.80+0	4.40+2	1.38+0	
3.20+0	5.10+2	1.38+0	3.50+0	5.80+2	1.44+0	3.70+0	6.40+2	1.51+0	
3.90+0	6.80+2	1.54+0							
		2.32-1			2.67-1	4.20-1	1.20+0	2.80-1	7
4.54-1	1.63+0	2.94-1	5.10-1	2.10+0	2.62-1				
L.50+0	1.10+2	8.93-1							10
2.00+0	2.21+2	1.10+0	3.00+0	3.69+2	1.07+0	4.00+0	4.90+2	1.08+0	20
5.00+0	5.53+2	1.05+0	6.00+0	6.26+2	1.08+0	7.00+0	6.63+2	1.08+0	
3.00+0	6.95+2	1.10+0	9.00+0	6.97+2	1.08+0	1.00+1	7.17+2	1.10+0	
1.10+1	6.92+2	1.06+0	1.20+1	6.75+2	1.04+0	1.30+1	6.44+2	1.00+0	
1.65+1	6.94+2	1.14+0	2.00+1	6.12+2	1.06+0	2.50+1	5.76+2	1.10+0	
9.00-2	5.65-3	1.07+0	1.10-1	1.88-2	1.15+0	1.30-1	4.54-2	1.19+0	25
1.50-1	9.01-2	1.19+0	1.70-1	1.65-1	1.24+0				
1.00-1	9.00-3	9.27-1	1.25-1	2.60-2	8.25-1	1.50-1	6.40-2	8.46-1	36
1.50+0	1.50+2	1.22+0	2.00+0	2.30+2	1.14+0	2.50+0	3.25+2	1.17+0	38
3.00+0	4.40+2	1.28+0	3.50+0	5.00+2	1.24+0	4.00+0	5.80+2	1.28+0	
4.50+0	6.40+2	1.30+0	5.00+0	6.10+2	1.16+0	5.50+0	6.70+2	1.21+0	
		3.07-1			2.83-1		2.03+1		44
		2.68-1		3.11+1	2.53-1	1.70+0	3.55+1	2.30-1	
1.90+0	4.28+1	2.30-1	2.10+0	4.68+1	2.15-1				
1.00+0	3.70+1	7.16-1	2.25+0	1.85+2	7.70-1	3.00+0	2.92+2	8.49-1	47
		1.06+0			1.07+0		3.12+2		55
3.00+0	3.83+2	1.11+0	4.96+0	5.82+2	1.11+0	5.96+0	6.55+2	1.13+0	
6.96+0	7.08+2	1.16+0	8.94+0	7.48+2	1.16+0	1.09+1	7.62+2	1.17+0	
		7.00-1			7.02-1	1.95-1	1.75-1	7.28-1	57
2.50-1	4.74-1	7.21-1	2.95-1	8.15-1	6.60-1		1.26+0		
3.60-1	1.70+0	6.72-1	3.80-1	1.90+0	6.23-1	4.15-1	2.26+0	5.49-1	
		1.27+0			1.25+0		1.60+1		69
		1.22+0				9.00-1	4.80+1	1.20+0	
1 00±0	6.40+1	1.24+0	1.10+0	8.00+1	1.24+0	1.20+0	9.70+1	1.24+0	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	$E_{\mathfrak{t}}$	σ ^{Exper}	$\sigma^{ m Exper}$	_
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
1 2010	1.13+2	1 0010	1 (0)	0 1 2212	1 2610	1 5010	1 5710	1 2710	
	1.13+2			0 1.33+2 0 1.94+2			1.57+2 2.22+2		
	2.38+2 3.03+2			0 2.59+2 0 3.20+2		2.10+0	2.74+2	1.20+0	
6.00-1	1.30+1	9.86-1	7.00-	1 2.10+1	1.02+0	8.00-1	3.20+1	1.08+0	72
	4.50+1			0 6.10+1			1.40+2		
2.00+0	2.10+2	1.04+0		0 3.10+2			4.00+2		
	8.30-2			1 2.98-1		2.50-1	6.20-1	9.43-1	73
3.00-1	1.24+0	9.44-1	3.50-	1 2.00+0	8.74-1	4.00-1	2.80+0	7.70-1	
	3.80+0			1 6.60+0		6.50-1	1.09+1	6.54-1	
	1.83+1		8.50-	1 2.63+1	7.62-1	9.50-1	3.68+1	8.05-1	
1.05+0	4.14+1	7.14-1							
	5.45+1			0 6.83+1			8.37+1		77
	1.02+2			0 1.18+2			1.36+2		
	1.55+2			0 1.74+2			1.93+2		
	2.08+2			0 2.30+2			2.50+2		
	2.67+2			0 2.85+2			3.00+2		
	3.18+2			0 3.31+2			3.46+2		
2.80+0	3.59+2	1.13+0	2.90+	0 3.72+2	1.12+0	3.00+0	3.85+2	1.12+0	
	7.45-3			1 1.45-2			2.64-2		79
1.30-	4.58-2	1.20+0	1.40-	1 7.63-2	1.39+0	1.50-1	1.23-1	1.63+0	
1.00+0	3.70+1	7.16-1	2.00+	0 1.54+2	7.63-1	5.00+0	5.20+2	9.86-1	84
3.00+0	3.70+2	1.08+0							94
5.00-1	6.65+0	8.82-1	5.50-	1 9.80+0	9.66-1	6.00-	1.32+1	1.00+0	98
	1.63+1			1 1.99+1			l 2.32+1		
	2.82+1			1 3.30+1			l 3.78+1		
	4.41+1			0 4.89+1			5.43+1		
	6.11+1			0 6.77+1			7.34+1		
						1.35+0			
						1.50+0			
		9.72-1			9.69-1		1.41+2		
		9.66-1	1./5+	U 1.55+2	9.54-1	1.80+0	1.61+2		
) 1.72+2) 1.96+2	9.66-1 9.71-1	1.90+	υ 1./8+2	9.58-1	1.95+0	1.90+2	9.81-1	
3.80-2	2 4.00-6	1.11+0	4.00-	2 1.00-5	1.49+0	4.50-2	2 2.50-5	1.02+0	101
		8.64-1				6.00-2			
	2 1.00-3		2.30	+	A		+		
4.00+0	4.80+2	1.06+0	6.00+	0 6.81+2	1.18+0	8.00+6	7.16+2	1.13+0	105
		1.16+0				1.40+			
		1.09+0				2.00+			
	1 5.65+2								
2.00-	L 2.70-1	1.01+0	2.25-	1 3.90-1	9.00-1	2.50-	1 6.20-1	9.43-1	106
		8.65-1							

 $\textbf{TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium}^{a,b} \underline{\hspace{0.5cm}} \textbf{-Continued}$

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	$\sigma^{ m Exper}$	$E_{\scriptscriptstyle \rm I}$	σ^{Exper}	σ^{Exper}	
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
2 50-1	2.01+0	Q 7Q_1	3 75-1	2.48+0	8 51-1	4 00-1	3.17+0	8 72-1	
	3.63+0			4.56+0			5.57+0		
	6.64+0		4.50-1	4.3010	0.40 1	4.75	. 3.3710	0.05	
< 00 0	2 00 4	6 27 1	7 00-2	6.16-4	E 0E_1	8 00-1	2 1.57-3	6 00-1	108
	2.09-4 3.57-3			7.45-3			. 1.37-3 . 1.45-2		100
	2.64-2			. 7.43-3 . 4.58-2			. 1.43-2 . 7.63-2		
	1.23-1		1.50-1	. 4.30-2	1.2010	1.40-1	. 7.05-2	1.3710	
1.50 1	1.25 1	1.00.0							
	5.28+1			8.53+1			1.30+2		112
	1.68+2			2.11+2			2.48+2		
2.50+0	2.88+2	1.04+0	2.75+0	3.33+2	1.07+0	3.00+0	3.71+2	1.08+0	
2.00-1	2.74-1	1.02+0	3.00-1	1.48+0	1.13+0	4.00-1	3.99+0	1.10+0	113
	8.00+0			1.32+1			3.00+1		
1.00+0	5.15+1	9.97-1	1.20+0	8.12+1	1.04+0	1.60+0	1.43+2	1.03+0	
2.00+0	2.15+2	1.07+0	2.40+0	2.72+2	1.04+0				
1.00-1	3.77-3	3.88-1	1.25-1	1.56-2	4.95-1	1.50-	4.34-2	5.73-1	118
	9.50-2			1.77-1			9.57-1		
	2.89+0			6.08+0			1.08+1		
	1.70+1			2.50+1					
3 00-1	1.20+0	Q 1/-1	/c 00=1	l 3.37+0	9 27-1	5.00=	l 7.10+0	0 /1-1	132
	1.26+1			1.90+1			l 2.87+1		152
	4.88+1			7.67+1			1.08+2		
	1.38+2) 1.73+2			2.08+2		
	2.36+2			2.69+2		2.001	2.0012	1.0510	
	6.88+0			1.24+1			l 1.94+1		137
	2.80+1			4.88+1			7.29+1		
	1.02+2			1.32+2			1.65+2		
	1.97+2			2.26+2		2.30+0	2.50+2	1.01+0	
Z.4U+0	2.61+2	9.95-1	2.50+0	2.76+2	9.9/-1				
1.50+0	8.95+1	7.27-1	2.10+0	2.13+2	9.80-1 1.07+0	2.60+	2.85+2	9.78-1	148
3.10+0	3.64+2	1.02+0	3.60+0	4.40+2	1.07+0				
1.00+0	4.94+1	9.57-1							149
23 V	anadium	,	Fluoroso	anco via	1d = 0.24	43			
es V	anautum	J	r TUOT 62C6	ance Are	1u - 0.2	1 J			
1.00-1	5.50-3	9.90-1	1.25-1	1.70-2	8.93-1	1.50-	1 4.30-2	9.10-1	36
2.25+0	1.43+2	7.27-1							47
4.00-1	3.00+0	1.19+0	5.00-3	l 6.30+0	1.19+0	6.00-	1 1.60+1	1.70+0	69
		1.16+0			1.20+0		1 3.50+1		
		1.16+0			1.19+0		7.00+1		
		1.22+0			1.19+0		1.18+2		
		1.22+0	1.70+0	1.47+2	1.20+0		1.69+2		
		1.21+0	2.00+0	1.97+2	1.21+0		2.13+2		
2 2010	2 19+2	1.15+0	2.30+0	2.44+2	1.20+0				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	$\sigma^{ m Exper}$	\boldsymbol{E}_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	$E_{\mathfrak{i}}$	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	_
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
1.50-1	5.80-2	1.23+0	2.00-1	1.65-1	9.51-1	2.50-1	4.30-1	9.84-1	73
3.00-1	8.80-1	9.93-1	3.50-1	1.20+0	7.66-1	4.00-1	1 2.30+0	9.14-1	
	3.00+0		5.50-1	5.00+0	6.94-1	6.50-1	L 8.80+0	7.33-1	
	1.60+1			1.78+1			1 2.55+1		
9.50-1	2.27+1	6.66-1							76
1.00+0	3.52+1	9.07-1	1.10+0	4.38+1	8.96-1	1.30+0	6.63+1	9.27-1	86
1.50+0	8.60+1	8.92-1	1.70+0	1.11+2	9.06-1	1.90+0	1.37+2	9.17-1	
2.00+0	1.51+2	9.26-1	2.10+0	1.64+2	9.30-1	2.30+0	1.90+2	9.35-1	
2.50+0	2.14+2	9.34-1	2.70+0	2.35+2	9.24-1	2.80+0	2.45+2	9.19-1	
2.90+0	2.53+2	9.08-1	3.00+0	2.63+2	9.06-1	•			
5.00-1	4.80+0	9.03-1	5.50-1	6.92+0	9.60-1		1 8.75+0		98
6.50-1	1.13+1	9.41-1	7.00-1	l 1.40+1	9.39-1		1 1.66+1		
8.00-1	2.06+1	9.49-1	8.50-1	1 2.52+1	9.85-1		1 2.92+1		
9.50-1	3.39+1	9.95-1	1.00+0	3.84+1	9.89-1	1.05+0	0 4.29+1	9.80-1	
1.10+0	4.72+1	9.66-1	1.15+0	5.43+1	1.00+0	1.20+	5.91+1	9.87-1	
1.25+0	6.57+1	1.00+0	1.30+0	7.17+1	1.00+0	1.35+0	7.79+1	1.00+0	
1.40+0	8.35+1	9.98-1	1.45+0	9.05+1	1.01+0	1.50+	0 9.48+1	9.83-1	
1.55+0	1.05+2	1.02+0	1.60+0	1.10+2	1.01+0	1.65+	0 1.16+2	9.99-1	
	1.23+2		1.75+0	1.28+2	9.92-1	1.80+	0 1.34+2	9.88-1	
	1.40+2		1.90+0	1.45+2	9.70-1		0 1.56+2		
	1.56+2								
2.00-	l 1.45-1	8.36-1	2.25-	1 2.42-1	8.49-1	2.50-	1 3.61-1	8.26-1	106
2.75-	l 4.71-1	7.41-1	3.00-	1 7.80-1	8.80-1	3.25-	1 1.09+0	9.11-1	
	L 1.42+0		3.75-	1 1.90+0	9.48-1	4.00-	1 2.23+0	8.86-1	
	L 2.82+0			1 3.31+0				9.57-1	
	L 5.17+0								
5.00-	l 5.63+0	1.06+0	6.00-	1 1.10+1	1.17+0	8.00-	1 2.04+1	9.40-1	113
	4.00+1		1.20+	5.75+1	9.60-1	1.60+	0 1.10+2	2 1.01+0	
	1.54+2		2.40+	0 2.21+2	1.02+0				
1.00+	4.13+1	1.06+0	1.20+	0 6.20+1	1.04+0	1.40+	0 8.40+1	1.00+0	137
1.60+	1.09+2	9.96-1	1.80+	0 1.35+2	9.95-1	2.00+	0 1.71+2	2 1.05+0	
	1.89+2								
24	Chromium		Fluoresc	ence yie	1d = 0.2	75			
1.00-	1 2.80-3	8.78-1	1.25-	1 1.00-2	8.65-1	1.50-	1 2.70-2	2 9.08-1	36
		1.29+0		1 8.70+0	1.28+0			1.26+0	69
8.00-	1 2.09+1	1.30+0	9.00-	1 2.70+1	1.21+0	1.00+	0 3.60+3	l 1.23+0	
		1.26+0		0 5.50+1	1.20+0	1.30+	0 6.80+	l 1.23+0	
		1.26+0		0 9.40+1		1.60+	0 1.08+2	2 1.25+0	
		1.27+0			1.24+0			2 1.24+0	
	0 1.67+2			0 1.77+2				2 1.28+0	
2.00-	1 6.80-2	5.97-1	2.50-	1 2.10-1	7.15-1	3.00-	1 4.10-	1 6.77-1	73
		7.19-1			6.42-1	4.50-	1 1.62+0	6.10-1	
3.30-									
	1 2.80+0	5.41-1	6.50-	1 4.90 + 0	5.61-1	7.50-	1 8.20+0	0 6.14-1	

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_{i}	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	$E_{\scriptscriptstyle \parallel}$	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ extsf{ECPSSR}}$	Ref.
9.50-	1.73+	1 6.73-1							76
1.00-	-1 3.60-	3 1.13+0	1.10	-1 6.20-	3 1.10+0	1.20	-1 1.07-	2 1.16+0	79
		2 1.26+0			2 1.33+0		-1 4.00-		
9.00-	-1 1.55+	1 6.96-1	9.50	-1 1.73+	-1 6.73-1	1.00	+0 2.50+	1 8.54-1	80
1.104	HO 2.73+	1 7.31-1	1.20	+0 3.60+	-1 7.83-1	1.30	+0 4.17+	1 7.52-1	
1.40	F0 5.13+	1 7.85-1	1.60	+0 6.06+	1 7.00-1	1.70	+0 7.19+	1 7.36-1	
1.80	FO 8.46+	1 7.75-1	1.90	+0 8.18+	-1 6.80-1	2.00	+0 8.60+	1 6.53-1	
2.10	HO 1.20+	2 8.35-1	2.20	+0 1.134	-2 7.28-1	2.30	+0 1.28+	2 7.68-1	
2.40	HO 1.37+	2 7.68-1	2.50	+0 1.71+	-2 9.00-1	2.60	+0 1.54+	2 7.66-1	
2.70	HO 1.68+	2 7.91-1	2.80	+0 1.694	-2 7.56-1	3.00	+0 2.07+	2 8.46-1	
3.40	+0 2.50+	2 8.76-1	3.60	+0 2.65+	+2 8.71 - 1	3.80	+0 2.79+	2 8.65-1	
		2 1.04+0							
3.00	+0 2.81+	2 1.15+0	5.00	+0 4.86+	1.18+0	7.00	+0 6.19+	2 1.22+0	94
9.00	+0 6.63+	2 1.20+0	1.10	+1 6.78	1.19+0				
5.00	-1 3.52+	0 9.30-1	5.50	-1 4.84	+0 9.36 - 1	6.00	-1 6.57+	0 9.64-1	98
6.50	-1 8.19+	0 9.38-1	7.00	-1 1.024	F1 9.35-1	7.50	-1 1.24+	1 9.28-1	
8.00	-1 1.49+	1 9.27-1	8.50	-1 1.794	F1 9.40-1	9.00	-1 2.07+	1 9.30-1	
		1 9.26-1			F1 9.56-1	1.05	5+0 3.13+	1 9.44-1	
		1 9.65-1			F1 9.31-1			1 9.57-1	
		1 9.72-1			F1 9.53-1			1 9.57-1	
		1 9.66-1			F1 9.55-1			1 9.58-1	
		1 9.64-1			+1 9.81-1			1 9.69-1	
		1 9.69-1			+2 9.68-1			2 9.71-1	
		2 9.86-1			+2 9.73 - 1			2 9.69-1	
		2 9.72-1	1.50	.0 1.17	. 2 3.73 1	1.73	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 7.07 1	
2 00-	-1 1 07-	1 9.39-1	2 25	-1 1 69	-1 8.93-1	2.50	1-1 2 77-	1 9.44-1	106
		1 9.39-1			-1 9.57-1			1 9.48-1	100
		0 9.40-1			+0 9.38-1			0 9.55-1	
		$0.9.40^{-1}$			+0 9.30-1 +0 9.31-1			0 9.33-1	
		0 9.26-1	+.50	1 2.4/	10 3.31-T	4./3	, I 2.30T	U 3.34-T	
7.00-	+0 3.80+	2 7.51-1							114
7.00	+0 3.95+	2 7.81-1							125
		1 1.05+0			+0 9.72-1			0 1.02+0	132
		0 1.02+0			+1 9.62-1			-1 9.89-1	
		1 9.73-1			+1 9.74-1			·1 9.75 - 1	
1.60	+0 8.46+	-1 9.77-1	1.80	+0 1.09	+2 9.99-1	2.00)+0 1.27+	-2 9.64-1	
2.20	+0 1.52+	2 9.79-1	2.40	+0 1.78	+2 9.98-1				
8.00	-1 1.50+	1 9.33-1	1.00	+0 2.76	+1 9.42-1	1.20)+0 4.31+	1 9.37-1	137
1.40	+0 6.18+	1 9.46-1	1.60	+0 8.29	+1 9.57-1	1.80	0+0 1.08+	-2 9.90-1	
2.00	+0 1.29+	-2 9.79-1	2.20	+0 1.48	+2 9.53-1	2.30)+0 1.614	-2 9.66-1	
		2 9.64-1		+0 1.79-					

Table 2. K-shell x-ray production by protons in target elements from beryllium to uranium. —Continued

$E_{\mathfrak{t}}$	$\sigma^{ m Exper}$	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	_
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
1 00+0	2.83+1	0 66-1	1 104	3.79+1	1 0240	1 2040	4.90+1	1 0740	152
	5.74+1			7.27+1			8.83+1		132
				1.18+2			1.40+2		
	9.93+1						_		
	1.64+2			1.82+2			2.09+2		
	2.17+2			2.41+2			2.70+2		
	3.03+2			3.34+2			3.57+2		
2.80+0	3.82+2	1.71+0	2.90+0	0 4.30+2	1.84+0	3.00+0	4.53+2	1.85+0	
25 ì	langanes:	e	Fluoresco	ence yie	1d = 0.3	08			
1.00-	1 1.10-3	6.02-1	1.25-	1 4.30-3	6.13-1	1.50-1	1.30-2	6.94-1	36
2.50+0	0 1.56+2	9.99-1	3.00+	2.26+2	1.10+0	4.50+0	3.56+2	1.08+0	52
6.00+0	4.46+2	1.07+0	6.50+	0 4.37+2	9.98-1	7.00+0	5.19+2	1.14+0	
8.00+0	5.28+2	1.09+0	8.50+	5.97+2	1.20+0	9.00+0	5.68+2	1.12+0	
	1 5.47+2			1 5.64+2	1.07+0	1.10+1	6.19+2	1.16+0	
1.20+1	1 6.56+2	1.22+0							
1.30-1	1 8.20-3	9.39-1	1.50-	1 1.23-2	6.57-1	1.95-1	5.39-2	8.07-1	57
2.50-	1 1.65-1	8.33-1		1 2.70-1				6.04-1	
	1 5.13-1			1 7.02-1			8.15-1		
4.00-	1 1.55+0	1.25+0	5.00-	1 3.20+0	1.18+0	6.00-1	5.70+0	1.15+0	69
	1 9.30+0			1 1.45+1			1.98+1		
	0 2.60+1			0 3.40+1				1.16+0	
	0 2.00+1 0 5.10+1			0 5.40+1 0 6.00+1				1.16+0	
	0 8.20+1			0 9.30+1				1.22+0	
	0 1.19+2			0 1.33+2		2.10+0	1.40+2	1.21+0	
2.20+0	0 1.59+2	1.26+0	2.30+	0 1.71+2	1.25+0				
3.00+	0 2.18+2	1.06+0							94
5.00-	1 -2.64+0	9.76-1	5.50-	1 3.64+0	9.78-1	6.00-1	4.72+0	9.56-1	98
6.50-	1 6.12+0	9.62-1	7.00-	1 7.44+0	9.30-1	7.50-1	9.14+0	9.28-1	
8.00-	1 1.11+1	9.32-1	8.50-	1 1.32+1	9.31-1	9.00-1	1.55+1	9.31-1	
9.50-	1 1.81+1	9.37-1	1.00+	0 2.10+1	9.47-1	1.05+0	2.38+1	9.45-1	
1.10+	0 2.68+1	9.45-1	1.15+	0 3.00+1	9.45-1	1.20+0	3.35+1	9.48-1	
	0 3.75+1				9.42-1			9.47-1	
	0 4.83+1				9.75-1			9.47-1	
	0 6.12+1				9.62-1			9.67-1	
	0 0.1211 0 7.29+1				9.65-1			9.53-1	
	0 7.29 + 1 0 8.69+1				9.45-1			9.77-1	
				O 3.1371	3.43-1	1.3370	フ・フムでよ	J. / / - 1	
2.00+	0 1.03+2	y.08-1							
	1 4.80-2				7.05-1			7.82-1	106
	1 2.21-1				8.29-1			8.09-1	
3.50-	1 6.60-1	8.75-1			8.71-1			8.98-1	
	1 1.43+0	9.30-1	4.50-	1 1.73+0	9.20-1	4.75-1	2.15+0	9.47-1	
	1 0 (010	9.61-1							
4.25-	1 2.60+0								
4.25- 5.00-				1 4.24+0	8.59-1	8.00-1	1.08+1	9.07-1	113
4.25- 5.00- 5.00-	1 2.37+0 1 2.37+0 0 2.18+1	8.76-1	6.00-		8.59-1 9.96-1			9.07-1 9.70-1	113

Table 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

$E_{\mathfrak{t}}$	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ ^{Exper}	$\sigma^{ m Exper}$	E_1	σ^{Exper}	$\sigma^{ m Exper}$	_
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma_{-}^{\text{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
26	Iron]	Fluoresc	ence yie	1d = 0.34	,			
1.55+	0 4.40+1	8.82-1	3.90+0	2.70+2	1.12+0				2
	1 7.40-3			1 1.10-2			1.40-2		6
	1 2.50-2			1 4.00-2			5.80-2		
	1 8.30-2			1.10-1			1.50-1		
	1 2.00-1			1 2.50-1			3.00-1		
	1 3.80-1			1 5.70-1			8.00-1		
	1 3.60+0			1 6.80+0		1.04+0	1.10+1	5.92-1	
1.20+	0 1.40+1	5.20-1	1.30+0	0 1.70+1	5.16-1				
4.54-	1 5.53-1	4.02-1							7
1.50+	0 3.80+1	8.21-1							10
7.00-	1 2.96+0	5.05-1	9.00-	1 6.21+0	5.00-1	1.10+0	1.13+1	5.24-1	27
1.30+	0 1.59+1	4.82-1	1.50+	0 2.22+1	4.80-1	1.70+0	2.61+1	4.28-1	
1.90+	0 3.31+1	4.30-1	2.10+	0 4.19+1	4.48-1	2.30+0	4.92+1	4.47-1	
2.50+	0 6.42+1	5.03-1							
1.60+	2 2.29+2	1.51+0							30
1.00-	1 1.20-3	1.17+0	1.25-	1 4.90-3	1.16+0	1.50-	1.20-2	1.02+0	36
1.00+	0 1.40+1	8.39-1	1.50+	0 4.40+1	9.51-1	2.00+0	8.10+1	9.52-1	38
	0 1.20+2			0 1.85+2			2.20+2		
	0 2.50+2			0 2.80+2			3.10+2		
	0 3.30+2							,,,,,	
1.00+	0 1.10+1	6.59-1	2.25+	0 7.40+1	6.98-1	3.00+0	1.25+2	7.33-1	47
2.50+	0 1.19+2	9.32-1	3.00+	0 1.77+2	1.04+0	4.00+0	2.68+2	1.08+0	52
4.50+	0 2.75+2	9.70-1	5.00+	3.12+2	9.93-1	6.00+0	4.05+2	1.11+0	
6.50+	0 3.86+2	9.95-1	7.00+	0 4.29+2	1.05+0	8.00+0	4.49+2	1.03+0	
8.50+	0 4.91+2	1.09+0	9.00+	0 5.00+2	1.09+0	1.00+3	l 4.90+2	1.03+0	
1.05+	1 4.86+2	1.01+0	1.10+	1 4.99+2	1.02+0	1.20+	L 4.94+2	9.92-1	
5.00-	1 1.40+0	7.25-1	6.00-	1 4.40+0	1.23+0	7.00-	L 7.20+0	1.23+0	53
8.00-	1 9.50+0	1.08+0		1 1.42+1			1.69+1		
	0 2.40+1			0 2.96+1			3.44+1		
1.40+	0 3.92+1	9.96-1	1.50+	0 5.02+1	1.08+0		5.69+1		
	0 6.57+1				1.01+0		7.27+1		
	0 7.65+1			-					
1.50+	0 4.66+1	1.01+0	2.00+	0 8.68+1	1.02+0	2.50+0	1.32+2	1.03+0	55
	0 1.75+2				1.04+0		3.88+2		
	0 4.39+2				1.07+0		4.95+2		
	1 5.29+2					_,,,,,,		_,,,,,	
1.30-	1 8.00-3	1.51+0	1.50-	1 1.56-2	1.33+0	1.95-	L 4.45-2	1.02+0	57
	1 1.12-1				6.51-1		1 2.76 - 1		٠.
	1 3.46-1				5.34-1		1 5.26-1		

 $\textbf{TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium}^{a,b} \textbf{—Continued} \\$

E_1	σ ^{Exper}	$\sigma^{ m Exper}$	$E_{\mathfrak{l}}$	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ ^{Exper}	σ^{Exper}	_
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
8.30-1	8.10+0	8.25-1	1.58+	0 5.90+1	1.13+0	2.56+0	0 1.34+2	1.01+0	66
	2.27+2								
4.00-1	1.24+0	1.43+0	5.00-	1 2.30+0	1.19+0	6.00-	1 4.20+0	1.17+0	69
	6.70+0			1 1.05+1			1 1.39+1		
	1.87+1			0 2.50+1			0 3.10+1		
	3.90+1			0 4.70+1			0 5.40+1		
	6.10+1			0 7.00+1			0 8.20+1		
	9.30+1		2.00+	0 9.90+1	1.16+0		0 1.11+2		
2.20+0	1.20+2	1.18+0	2.30+	0 1.28+2	1.16+0				
2.00-1	2.80-2	5.68-1	2.50-	1 9.40-2	7.04-1	3.00-	1 1.90-1	6.65-1	73 ⁻
	3.50-1			1 5.40-1			1 8.90-1		
	1.88+0			1 3.26+0			1 5.50+0		
8.50-1	8.80+0	8.35-1	9.50-	1 1.35+1	9.32-1	1.05+	0 1.40+1	7.34-1	
9.50-1	l 9.30+0	6.42-1							76
1.00-1	L 4.73-4	4.61-1	1.10-	1 9.95-4	5.14-1	1.20-	1 1.96-3	5.93-1	79
	3.66-3			1 6.50-3			1 1.11-2		
1.00+0	1.26+1	7.55-1	2.00+	0 6.37+1	7.48-1	5.00+	0 2.37+2	7.54-1	84
1.00+0	1.49+1	8.93-1	1.20+	0 2.32+1	8.61-1	1.50+	0 3.90+1	8.43-1	86
1.80+0	5.92+1	8.60-1		0 7.39+1			0 9.71+1		
2.50+0	1.12+2	8.78-1	2.80+	0 1.29+2	8.42-1	2.90+	0 1.34+2	8.27-1	
3.00+0	1.76+2	1.03+0							94
	1 2.04+0			1 2.82+0			1 3.48+0		98
	1 4.48+0			1 6.62+0			1 6.83+0		
	1 8.47+0			1 1.13+1			1 1.21+1		
	1 1.40+1			0 1.57+1			0 1.81+1		
	2.19+1			0 2.49+1			0 2.71+1		
	3.02+1			0 3.23+1			0 3.67+1		
	0 4.10+1			0 4.36+1			0 4.51+1		
	0 4.77+1			0 5.22+1			0 5.53+1		
	0 6.02+1			0 6.26+1			0 6.60+1		
	0 6.94+1 0 8.31+1		1.90+	0 7.53+1	9./9-1	1.95+	0 7.79+1	. A.OI-I	
/ DD+/	በ 2 ፈንቷን	1.07+0	6 001	ብ ሬ ሰበቷን	1.09+0	8 ሀሀተ	0 5.00+2	1 14+0	105
		1.15+0			2 1.21+0		1 5.69+2		103
		1.15+0			1.21+0		$1 \ 5.09+2$		
	1 5.34+2		1.001	1 0.1072	. 1.2310	2.001	1 3.03/2	. 1.10.0	
2.50-	1 1.02-1	7.63-1	2.75-	1 1.93-1	9.65-1	3.00-	1 2.44-1	8.55-1	106
		8.82-1			8.96-1		1 6.60-1		
		9.10-1			9.49-1		1 1.26+0		
	1 1.46+0			1 1.83+0					
7.00-	2 2.85-5	4.76-1	8.00-	2 8.16-5	4.24-1		2 2.06-4		108
	1 / 70 /	4.61-1	1 10	1 0 05-/	5.14-1	1 20-	1 1.96-3	5 03-1	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	$\sigma^{ m Exper}$	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
1.30-1	3.66-3	6.89-1	1.40-1	6.50-3	8.05-1	1.50)-1 1.11-2	9.45-1	
5.00-1	1.94+0	1.00+0	6.00-1	3.82+0	1.07+0	8.00) - 1 9.23+0	1.05+0	113
	1.68+1			2.74+1			+0 5.00+1		
	8.57+1			1.13+2					
1.00-1	3.09-4	3.01-1	1.25-1	1.67-3	3.96-1	1.50)-1 5.71-3	4.86-1	118
1.75-1	1.44-2	5.55-1	2.00-1	2.98-2	6.05-1	2.50)-1 9.15-2	6.85-1	
3.00-1	2.13-1	7.46-1	4.00-1	7.21-1	8.30-1	5.00)-1 1.56+0	8.07-1	
7.00-1	4.86+0	8.30-1	8.00-1	7.31+0	8.30-1				
	5.78-2			1.46-1		3.00)-1 3.09-1	1.08+0	121
	8.96-1			2.05+0		6.00)-1 3.73+0	1.04+0	
7.00-1	5.99+0	1.02+0	8.00-1	9.10+0	1.03+0	9.00)-1 1.27+1	1.02+0	
	1.76+1			2.05+1		1.20)+0 2.76+1	1.02+0	152
1.30+0	3.11+1	9.43-1	1.40+0	3.81+1	9.68-1	1.50)+0 4.25+1	9.18-1	
1.60+0	5.19+1	9.71-1	1.70+0	5.86+1	9.60-1	1.80	0+0 6.50+1	9.44-1	
1.90+0	6.77+1	8.80-1	2.00+0	6.86+1	8.06-1)+0 7.41+1	· · · - —	
2.20+0	7.76+1	7.62-1	2.30+0	9.02+1	8.19-1	2.40	0+0 9.76+1	8.22-1	
2.50+0	1.03+2	8.07-1	2.60+0	1.05+2	7.70-1	2.70	0+0 1.10+2	7.60-1	
2.80+0	1.18+2	7.70-1	2.90+0	1.23+2	7.59-1	3.00)+0 1.29+2	7.57-1	
27 0	obalt		Fluoresce	ence yie	1d = 0.3	373			
1.00-1	5.00-4	8.70-1	1.25-1	2.30-3	9.03-1	1.50	0-1 6.80-3	9.19-1	36
1.00+0	7.60+0	6.03-1	1.50+0	4.20+1	1.16+0	2.00	0+0 7.80+1	1.15+0	38
2.50+0	1.10+2	1.06+0	3.00+0	1.50+2	1.06+0	3.50)+0 1.90+2	1.07+0	
4.00+0	2.10+2	9.92-1	4.50+0	2.40+2	9.86-1	5.00	0+0 2.70+2	9.91-1	
5.50+0	3.10+2	1.04+0	6.00+0	3.20+2	9.94-1				
5.00-1	1.60+0	1.15+0	6.00-1	2.70+0	1.04+0	7.00	0-1 4.20+0	9.74-1	53
8.00-1	6.40+0	9.78-1	9.00-1	9.50+0	1.02+0	1.00	0+0 1.27+1	1.01+0	
1.10+0	1.65+1	1.00+0	1.20+0	1.99+1	9.60-1	1.30	0+0 2.47+1	9.73-1	
1.40+0	2.79+1	9.12-1	1.50+0	3.34+1	9.25-1	1.60	0+0 3.91+1	9.32-1	
1.70+0	4.42+1	9.18-1	1.80+0	4.60+1	8.43-1	1.90	0+0 5.35+1	8.73-1	
2.00+0	5.93+1	8.71-1							
	3.72+1			7.02+1		2.50)+0 1.09+2	1.05+0	55
3.00+0	1.46+2	1.04+0	4.96+0	2.67+2	9.89-1	5.96	5+0 3.20+2	1.00+0	
6.94+0	3.66+2	1.02+0	6.96+0	3.64+2	1.01+0	8.94	4+0 4.25+2	1.02+0	
1.09+1	4.61+2	1.03+0							
	1.90+0			3.50+0			0-1 5.70+0		69
	9.20+0			1.21+1		1.00	0+0 1.66+1	1.32+0	
	2.10+1			2.60+1		1.30	0+0 3.20+1	1.26+0	
	3.90+1		1.50+0	4.50+1	1.25+0	1.60	0+0 5.20+1	1.24+0	
1.70+0	5.90+1	1.22+0	1.80+0	6.70+1	1.23+0	1.90	0+0 8.00+1	1.30+0	
2.00+0	8.60+1	1.26+0	2.10+0	9.60+1	1.28+0	2.20	0+0 1.03+2	1.25+0	
2.30+0	1.10+2	1.23+0							
2 00-1	3.10-2	9 50-1	2 50-1	8.70-2	9 56-1	3 00	0-1 1.60-1	8 08-1	73
	3.10-2			5.70-2			0-1 1.00-1 0-1 7.20-1		13
J.JU-1	. 3.10-1	0.44-1	4.00-1	. 3./0-1	7.4J-1	4.30	J-1 /.ZU-1	7.35-1	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ ^{Exper}	$\sigma^{ m Exper}$	E_1	σ ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ ^{Exper}	$\sigma^{ m Exper}$	_
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
2.00+	0 5.13+1	7.54-1	5.00+	0 1.99+2	7.31-1				84
3.00+	0 1.35+2	9.57-1							94
2.00-	1 3.57-2	1.09+0	2.50-	1 9.94-2	1.09+0	3.00-	1 2.06-1	1.04+0	115
3.50-	1 3.75-1	1.02+0	4.00-	1 6.29-1	1.02+0	4.50-	1 9.94-1	1.04+0	
5.00-	1 1.35+0	9.70-1	6.00-	1 2.57+0	9.87-1	7.00-	1 4.04+0	9.37-1	
8.00-	1 6.02+0	9.20-1	9.00-	1 8.57+0	9.20-1	1.00+	1.13+1	8.96-1	
1.10+	0 1.48+1	9.01-1	1.20+	0 1.88+1	9.07-1	1.30+	2.34+1	9.22-1	
1.40+	0 2.78+1	9.09-1	1.50+	0 3.22+1	8.92-1	1.60+	3.68+1	8.77-1	
1.70+	0 4.27+1	8.86-1	1.80+	0 4.84+1	8.87-1	1.90+	5.52+1	9.00-1	
2.00+	0 6.25+1	9.18-1							
	1 2.03-1		4.00-	1 6.21-1	1.01+0	5.00-	1 1.41+0	1.01+0	132
6.00-	1 2.64+0	1.01+0	7.00-	1 4.34+0	1.01+0	8.00-	1 6.48+0	9.90-1	
1.00+	0 1.25+1	9.91-1	1.20+	0 2.08+1	1.00+0	1.40+	3.05+1	9.97-1	
1.60+	0 4.31+1	1.03+0	1.80+	0 5.67+1	1.04+0	2.00+	0 6.82+1	1.00+0	
2.20+	0 8.38+1	1.02+0	2.30+	0 8.99+1	1.00+0	2.40+	9.79+1	1.01+0	
	1 2.48+0		7.00-	1 4.11+0	9.53-1	8.00-	1 6.25+0	9.55-1	137
1.00+	0 1.23+1	9.75-1	1.20+	0 2.00+1	9.65-1	1.40+	0 2.93+1	9.58-1	
1.60+	0 4.08+1	9.72-1	1.80+	0 5.30+1	9.72-1	2.00+	0 6.59+1	9.68-1	
2.20+	0 8.00+1	9.73-1							
1.00+	0 1.21+1	9.60-1	1.20+	0 1.63+1	7.87-1	1.40+	0 2.69+1	8.80-1	152
1.60+	0 3.32+1	7.91-1	1.80+	0 4.28+1	7.85-1	2.00+	0 5.86+1	8.61-1	
2.20+	0 6.51+1	7.92-1	2.40+	0 8.06+1	8.33-1	2.60+	0 8.49+1	7.63-1	
2.80+	0 1.04+2	8.22-1	3.00+	0 1.16+2	8.23-1				
28	Nickel		Fluoresc	ence yie	1d = 0.4	06			
1.50+	0 2.00+1	7.11-1	1.70+	0 2.40+1	6.34-1	1.80+	0 2.70+1	6.25-1	5
1.90+	0 3.20+1	6.58-1	2.30+	0 4.40+1	6.09-1	2.40+	0 5.00+1	6.38-1	
2.50+	0 5.90+1	6.96-1	2.80+	0 7.60+1	7.34-1	3.10+	0 9.20+1	7.49-1	
3.50+	0 1.10+2	7.41-1	3.70+	0 1.20+2	7.47-1				
	0 2.94+2			0 4.09+2			1 4.77+2		20
1.40+	1 5.24+2	1.21+0		1 5.17+2		2.00+	1 5.46+2	1.24+0	
2.40+	1 5.10+2	1.19+0	2.80+	1 5.06+2	1.23+0				
1.00-	1 2.50-4	7.90-1	1.25-	1 1.40-3	9.15-1	1.50-	1 4.50-3	9.71-1	36
1.00+	0 7.20+0	7.56-1	2.25+	0 5.40+1	7.81-1	3.00+	0 9.20+1	7.88-1	47
2.50+	0 7.89+1	9.31-1	3.00+	0 1.23+2	1.05+0	4.00+	0 1.82+2	1.02+0	52
	0 2.12+2			0 2.49+2			0 2.67+2		
	0 2.56+2			0 3.53+2			0 3.18+2		
	0 4.18+2			0 3.62+2			1 4.06+2		
	1 4.55+2			1 4.54+2			1 4.93+2		
1.50+	0 2.75+1	9.78-1	2.00+	0 5.52+1	1.02+0	2.50+	0 8.64+1	1.02+0	55
	0 1.14+2			0 1.20+2			0 2.33+2		
	0 2.82+2			0 3.21+2			0 3.23+2		
ン・フロマ			0.271	0 3.41.2	T.OITO	0.737	0 3.2312	1.02.0	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_{i}	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	σ^{Exper}	σ^{Exper}	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
9.00-	2 1.22-4	9.00-1	1.00-	1 2.27-4	7.17-1	1.10-	1 4.19-4	6.54-1	57
1.20-	1 7.75-4	6.63-1	1.30-	1 1.47-3	7.47-1	1.40-	1 2.73-3	8.85-1	
	1 5.07-3			1 2.01-2			1 5.12-2		
	1 9.36-2 1 2.55-1			1 1.43-1 1 2.68-1		3.60-	1 1.92-1	6.64-1	
3.90-	1 2.33-1	0.44-1	4.13-	1 2.00-1	3.33-1				
	1 1.50+0			1 2.60+0			1 4.30+0		69
	1 6.20+0 0 1.53+1			1 8.30+0			0 1.16+1		
	0 2.70+1			0 1.82+1 0 3.50+1			0 2.40+1 0 4.10+1		
	0 4.70+1			0 5.30+1			0 4.10+1 0 5.80+1		
	0 6.80+1			0 7.70+1		1.90	0 3.60+1	1.19+0	
2.00-	1 2.10-2	9.75-1	2.50-	1 5.40-2	8.73-1	3.00-	1 1.08-1	7 89-1	73
3.50-	1 2.20-1	8.52-1		1 3.90-1			1 5.20-1		, ,
	1 1.20+0			1 2.14+0			1 3.16+0		
8.50-	1 4.20+0	7.15-1							
9.50-	1 5.30+0	6.46-1							76
1.00+	0 1.00+1	1.05+0	1.10+	0 1.28+1	1.02+0	1.20+	0 1.60+1	1.01+0	77
1.30+	0 1.97+1	1.00+0		0 2.38+1			0 2.84+1		
1.60+	0 3.35+1	1.02+0	1.70+	0 3.90+1	1.03+0		0 4.47+1		
1.90+	0 5.09+1	1.05+0	2.00+	0 5.71+1	1.05+0	2.10+	0 6.33+1	1.05+0	
	0 7.02+1			0 7.61+1		2.40+	0 8.23+1	1.05+0	
	0 8.82+1			0 9.36+1			0 9.81+1		
2.80+	0 1.03+2	9.95-1	2.90+	0 1.06+2	9.63-1	3.00+	0 1.09+2	9.34-1	
1.00+	0 7.38+0	7.74-1	2.00+	0 4.06+1	7.47-1	5.00+	0 1.98+2	8.46-1	84
1.25+	0 9.50+0	5.37-1							89
3.00+	0 1.19+2	1.02+0							94
2.50+	0 7.55+1	8.91-1	3.00+	0 1.02+2	8.74-1	5.00+	0 2.12+2	9.05-1	97
7.50+	0 3.07+2	9.15-1	9.00+	0 3.43+2	9.16-1	9.75+	0 3.48+2	8.94-1	
8.00-	2 2.67-5	5.61-1	9.00-	2 7.59-5	5.60-1	1.00-	1 1.93-4	6.10-1	108
	1 4.48-4		1.20-	1 9.63-4	8.24-1	1.30-	1 1.95-3	9.90-1	
1.40-	1 3.72-3	1.21+0	1.50-	1 6.81-3	1.47+0				
	1 9.85-1			1 1.81+0		8.00-	1 4.35+0	8.93-1	113
	0 9.03+0			0 1.51+1			0 2.18+1		
	0 3.05+1			0 4.05+1		2.00+	0 5.01+1	9.22-1	
2.20+	0 6.17+1	9.34-1	2.40+	0 7.33+1	9.35-1				
7.00+	0 3.10+2	9.71-1							114
	1 2.13-2			1 6.09-2		3.00-	1 1.30-1	9.49-1	115
	1 2.50-1			1 3.82-1			1 6.29-1		
	1 8.90-1			1 1.69+0			1 2.85+0		
	1 4.30+0			1 6.17+0			0 8.40+0		
1.10+	0 1.11+1	8.89-1	1.20+	0 1.42+1	8.95-1	1.30+	0 1.78+1	9.07-1	

 $TABLE\ 2.\ \textit{K-shell x-ray production by protons in target elements from beryllium\ to\ uranium^{a,b}--Continued }$

E_1	σ ^{Exper}	σ ^{Exper}	E_1	σ ^{Exper}	σ ^{Exper}	E_i	σ ^{Exper}	$\sigma^{ m Exper}$	_
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
1 40+4	0 2.10+1	8 88-1	1 504	0 2.48+1	8 82-1	1 604	-0 2.98+1	9 07-1	
	0 3.37+1			0 3.81+1			0 2.3011		
	0 4.97+1		1.00.	0 3.01.1	0.02 1	1.50.	0 4.4511	J.11 1	
5.50-	2 7.10-7	1.13+0	6.00-	2 2.30-6	1.13+0	6.50-	·2 6.70-6	1.24+0	120
	2 1.40-5			2 2.40-5			2 4.40-5		
9.00-	2 1.40-4	1.03+0	1.00-	1 3.40-4	1.07+0		1 6.80-4		
1.20-	1 1.20-3	1.03+0	1.30-	1 1.90-3	9.65-1	1.40-	1 3.20-3	1.04+0	
	1 4.30-3		1.60-	1 5.70-3	8.53-1	1.80-	1.10-2	8.73-1	
	1 1.70-2		2.20-	1 2.90-2	8.47-1	2.40-	1 4.30-2	8.36-1	
2.60-	1 6.10-2	8.27-1	2.80-	1 8.80-2	8.63-1	3.00-	1.30-1	9.49-1	
1.40+	0 2.54+1	1.07+0	1.50	0 3.00+1	1.07+0	1.604	+0 3.30+1	1.00+0	122
	0 3.99+1		1.80+	0 4.33+1	1.00+0	1.90	HO 4.88+1	1.00+0	
2.00+	0 5.40+1	9.94-1							
	1 1.44-1			1 4.43-1		5.00-	1.01+0	1.01+0	132
	1 1.97+0			1 3.28+0			-1 5.13+0		
	0 9.69+0			0 1.64+1			HO 2.41+1		
	0 3.35+1			0 4.39+1			0 5.55+1		
2.20+	0 6.75+1	1.02+0	2.304	0 7.37+1	1.02+0	2.40	1.95+1	1.01+0	
	0 9.00+0			0 1.49+1			+0 2.27+1		137
	0 3.13+1		1.804	0 4.22+1	9.76-1	2.00	⊦0 5.22 + 1	9.61-1	
2.20+	0 6.29+1	9.52-1							
	0 3.53+1		1.80	0 4.21+1	9.74-1	2.00	F0 5.48+1	1.01+0	151
2.20+	0 7.23+1	1.09+0	2.40	0 8.09+1	1.03+0				
29	Copper		Fluores	ence yie	1d = 0.4	4			
2.00-	1 4.50-3	3.13-1	2.50-	1 1.00-2	2.35-1	3.00	-1 2.10-2	2.19-1	3
	1 4.00-2		4.00	1 8.50-2	2.71-1	4.60	-1 2.00-1	3.73-1	
7.00-	1 2.00+0	8.46-1	1.00	-0 8.60+0	1.19+0	1.22-	+0 1.60+1	1.27+0	
4.00-	1 1.59-1	5.07-1	5.00-	1 3.28-1	4.49-1	6.00	-1 6.84-1	4.89-1	4
	1 1.07+0		8.00	1 1.71+0	4.68-1	9.00	-1 3.01+0	5.71-1	
1.00+	0 4.36+0	6.02-1							
	1 1.90-3			1 2.80-3			-1 4.50-3		6
	1 8.20-3			1 1.40-2			-1 2.20-2		
	1 3.20-2			1 4.60-2			-1 6.60-2		
	1 9.00-2			1.20-1			-1 1.60-1		
	1 2.00-1			1 3.00-1			-1 3.10-1		
	1 3.80-1			1 1.20+0			-1 2.20+0		
	1 4.50+0		1.04	0 6.30+0	7.75-1	1.14-	+0 7.80+0	7.46-1	
1.20+	0 9.40+0	7.69-1							
	1 2.10-2			1 7.10-2		4.20	-1 1.90-1	5.02-1	7
4.54-	1 2.88-1	5.65-1	5.10	-1 4.70-1	5.99-1				
1.50-	1 3.00-3	1.03+0	2.00	1.30-2	9.05-1	3.00	-1 8.80-2	9.18-1	9
		9.89-1		1 6.30-1		3.00		-	-

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	- (MeV)	(barn)	σ^{ECPSSR}	 Ref.
	(04111)		(1710)	(04111)			(ourn)		1101.
1.50+0	2.00+1	9.10-1							10
•									
	0 2.75+2		6.70+	0 2.85+2	1.05+0	7.00+	0 3.00+	2 1.07+0	21
	0 3.10+2			0 3.25+2				2 1.06+0	
	0 3.40+2	•		0 3.50+2				2 1.09+0	
	0 3.65+2 0 3.75+2			0 3.70+2		9.40+	0 3./5+	2 1.09+0	
9.00	0 3.73+2	1.00+0	9.907	0 3.70+2	1.05+0				
7.00-	1 1.77+0	7.49-1	9.00-	1 4.09+0	7.76-1	1.10+	0 7.11+	0 7.44-1	27
1.30+	0 1.09+1	7.18-1	1.50+	0 1.47+1	6.69-1	1.70+	0 1.80+	1 6.01-1	
	0 2.29+1		2.10+	0 3.09+1	6.40-1	2.30+	0 3.64+	1 6.23-1	
2.50+	0 4.79+1	6.94-1							
1.60+	2 2.20+2	1.50+0							30
1.25-	1 9.50-4	1.04+0	1.50-	1 3.10-3	1.06+0				36
1 00±	0 8.80+0	1 21±0	3 007	0 5.10+1	1 1740				39
1.001	0.0010	1.2170	2.001	0 3.10+1	. 1.17+0				39
1.00+	0 5.40+0	7.45-1	2.25+	0 4.20+1	7.52-1	3.00+	0 7.50+	1 7.81-1	47
	0 6.64+1			0 9.81+1				2 1.03+0	52
	0 1.80+2			0 1.86+2				2 1.03+0	
	0 2.46+2			0 2.99+2				2 9.31-1	
	0 3.46+2			0 3.25+2				2 1.07+0	
1.05+	1 3.62+2	9.95-1	1.10+	1 4.05+2	2 1.09+0	1.20+	1 4.25+	2 1.11+0	
5.00-	1 5.00-1	6.85-1	6.00-	1 1.00+0	7.14-1	7.00-	1 1.80+	0 7.61-1	53
8.00-	1 2.80+0	7.67-1	9.00-	1 4.10+0	7.77-1	1.00+	0 6.00+	0 8.28-1	
1.10+	0 8.00+0	8.37-1	1.20+	0 1.07+1	8.76-1	1.30+	0 1.34+	1 8.82-1	
1.40+	0 1.63+1	8.82-1	1.50+	0 1.98+1	9.01-1	1.60+	0 2.34+	1 9.06-1	
	0 2.68+1		1.80+	0 3.22+1	9.42-1	1.90+	0 3.59+	1 9.26-1	
2.00+	0 3.92+1	9.03-1							
1.50+	0 2 14+1	9.74-1	2 00+	n 4 27+1	9.83-1	2 504	-n 6 87 +	1 9.96-1	55
		9.90-1						2 1.04+0	33
	0 2.97+2			0 3.55+2				2 1.07+0	
		9.56-1		1 2.35-3				2 8.91-1	57
	1 4.54-2			1 7.21-2				2 6.83-1	
3.60-	1 1.26-1	6.13-1	3.85-	1 1.46-1	5.42-1	4.15-	1 1./2-	1 4.76-1	
3.00+	0 8.70+1	9.06-1	5.00+	0 1.80+2	8.94-1				59
	1 2.00+0			0 7.30+0				1 9.48-1	64
	0 2.79+1			0 4.26+1				1 9.07-1	
	0 7.46+1			0 9.05+1				2 1.01+0	
	0 1.34+2			0 1.44+2				2 1.10+0	
	0 1.99+2 0 2.47+2		5.00+	0 2.13+2	. 1.00+0	5.33+	U 2.31+	2 1.06+0	
3.0/+	U 2.4/+2	1.0/+0							

Table 2. K-shell x-ray production by protons in target elements from beryllium to uranium a,b —Continued

$\boldsymbol{E}_{\mathfrak{t}}$	σ ^{Exper}	σ^{Exper}	E_1	σ ^{Exper}	$\sigma^{ m Exper}$	E_1	σ ^{Exper}	$\sigma^{ m Exper}$	_
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
	1 4.30+0 0 1.23+2		1.58	+0 2.90+1	1.16+0	2.56+	+0 6.80+1	9.42-1	66
3.20T	0 1.2372	1.10+0							
5.00-	1 9.00-1	1.23+0	6.00	-1 1.80+0	1.29+0	7.00-	-1 2.90+0	1.23+0	69
	1 4.70+0			-1 6.40+0			+0 8.70+0		
1.10+	0 1.16+1	1.21+0	1.20-	+0 1.44+1	1.18+0	1.30	HO 1.82+1	1.20+0	
1.40+	0 2.20+1	1.19+0	1.50	+0 2.60+1	1.18+0	1.60	⊦0 3.20+1	1.24+0	
	0 3.60+1			+0 4.10+1			F0 4.80+1		
	0 5.30+1		2.10-	+0 5.70+1	1.18+0	2.20	+0 6.00+1	1.12+0	
2.30+	0 6.60+1	1.13+0							
2.00+	0 2.30+1	5.30-1							74
9.50-	1 4.20+0	6.76-1							76
	0 7.17+0			+0 1.21+1			+0 1.88+1		77
	0 2.27+1			+0 2.69+1			+0 3.62+1		
	0 4.63+1			+0 5.61+1			+0 6.50+1		
	0 6.94+1		2.60	+0 7.30+1	9.82-1	2.80-	+0 7.97+1	9.36-1	
3.00+	0 8.41+1	8.75-1							
9.00-	1 5.05+0	9.58-1	1.00	+0 7.89+0	1.09+0	1.10-	+0 1.27+1	1.33+0	80
	0 1.75+1			+0 1.85+1			+0 2.08+1		
	0 2.24+1			+0 2.80+1			+0 3.30+1		
	0 3.54+1			+0 4.44+1			+0 4.63+1		
	0 4.62+1			+0 5.38+1			+0 6.10+1		
	0 7.42+1			+0 6.95+1			+0 6.04+1		
	0 8.95+1 0 8.15+1			+0 8.90+1 +0 1.17+2			+0 7.49+1 +0 1.24+2		
	0 8.15+1			+0 1.17+2 +0 1.15+2			+0 1.24+2 +0 1.16+2		
	0 1.29+2			+0 1.13+2			+0 2.22+2		
	0 2.14+2			+0 2.20+2		3.00		. 1.30.0	
3.00+	0 9.72+1	1.01+0	5.00	+0 2.12+2	1.05+0	7.00	+0 2.98+2	2 1.06+0	94
	0 3.57+2			+1 3.92+2					
2.49-	1 4.68-2	1.12+0	3.00	-1 1.08-1	1.13+0	3.53	-1 2.11-1	1.11+0	99
	1 3.51-1			-1 6.77-1	1.05+0	5.52	-1 1.06+0	1.02+0	
	1 1.66+0			-1 2.44+0			-1 3.47+0		
	1 4.70+0			+0 8.18+0			+0 1.30+1		
1.52+	0 1.91+1	8.41-1	1.72	+0 2.61+1	8.48-1	1.91	+0 3.40+1	8.67-1	
1.50-	1 1.46-3	5.00-1	2.00	-1 9.46-3	6.59-1	3.00	-1 7.58-2	2 7.90-1	103
4.00-	1 2.77-1	8.84-1	5.00	-1 6.60-1	9.04-1	6.00	-1 1.26+0	9.00-1	
7.00-	1 2.20+0	9.31-1	8.00	-1 3.48+0	9.53-1				
2.20+	1 4.47+2	1.09+0	3.10	+1 3.91+2	1.02+0	4.40	+1 3.28+2	2 9.84-1	104
4.00+	0 1.56+2	1.03+0	6.00	+0 2.80+2	1.14+0	8.00	+0 3.69+2	2 1.18+0	105
1.00+	1 4.09+2	1.15+0	1.20	+1 4.49+2	1.17+0	1.40	+1 4.81+2	2 1.20+0	
	1 4.72+2		1.80	+1 4.94+2	1.20+0	2.00	+1 4.85+2	2 1.18+0	
2.20+	1 4.76+2	1.16+0							

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

 $TABLE \ 2. \ \textit{K}-shell \ x-ray \ production \ by \ protons \ in \ target \ elements \ from \ beryllium \ to \ uranium^{a,b} — Continued$

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
1 00+0	0 7.25+0	1 00+0	1 25+	0 1.38+1	1 01+0	1 50+0	2.40+1	1 09+0	112
	0 3.41+1			0 4.49+1			5.83+1		112
	0 7.03+1			0 4.4911			1.03+2		
2.30**	0 7.05+1	1.02+0	2.73	0 0.00+1	1.05+0	3.00+0) 1.U3 T 2	1.0/+0	
	1 7.65-1			1 1.46+0			1 3.80+0		113
	7.12+0			0 1.16+1			1.79+1		
	0 2.51+1			0 3.31+1		2.00+0	4.28+1	9.85-1	
2.20+	0 5.03+1	9.43-1	2.40+	0 6.19+1	9.73-1				
7.00+0	0 3.10+2	1.10+0							114
2.00-	1 1.65-2	1.15+0	2.50-	1 4.45-2	1.05+0	3.00-	1 9.52-2	9.93-1	115
3.50-	1 1.78-1	9.70-1	4.00-	1 3.03-1	9.67-1	4.50-	L 4.81-1	9.76-1	
5.00-	1 6.81-1	9.33-1	6.00-	1 1.38+0	9.86-1	7.00-3	1 2.30+0	9.73-1	
8.00-3	1 3.59+0	9.84-1	9.00-	1 5.12+0	9.71-1	1.00+0	7.48+0	1.03+0	
1.10+0	0 9.79+0	1.02+0	1.20+	0 1.21+1	9.90-1	1.30+0	1.48+1	9.74-1	
	0 1.78+1			0 2.15+1			2.51+1		
	0 2.92+1			0 3.35+1			3.78+1		
	0 4.24+1		1.00	0 0.00.1	7.00 1	1.70.	3.70.1	J.73 I	
F 00	1 6 00 1	0 50 1	6 OF	1 1 2510	0 20 1	7 50		0 00 1	449
	1 6.99-1			1 1.35+0			L 2.47+0		117
	1 3.95+0			0 6.01+0			1.19+1		
	0 1.93+1			0 2.92+1			3.95+1		
	0 5.47+1			0 6.85+1			8.41+1		
	0 9.70+1			0 9.22+1			1.45+2		
	0 2.46+2			0 3.50+2		1.22+	1 4.06+2	1.05+0	
1.83+	1 4.23+2	1.02+0	2.40+	1 4.12+2	1.02+0	3.01+	1 3.96+2	1.03+0	
3.56+	1 3.74+2	1.03+0	3.96+	1 3.56+2	1.02+0				
1.25-	1 3.34-4	3.65-1	1.50-	1 1.33-3	4.56-1	1.75-	1 4.02-3	5.68-1	118
2.00-	1 8.89-3	6.19-1	2.50-	1 2.98-2	7.01-1	3.00-	1 7.30-2	7.61-1	
4.00-	1 2.68-1	8.55-1		1 6.42-1			1.24+0		
	1 2.09+0			1 3.24+0				0.00 1	
1 40+	0 1.98+1	1 07+0	1 50+	0 2.16+1	9 83-1	1 60±0	2.51+1	0 72-1	122
		9.82-1			9.94-1		3.58+1		122
	0 4.15+1		1.00	0 3.4011	J.J . 1	1.501	7 3.3011	7.24-1	
7 004		1 1710							105
7.00+0	3.29+2	1.1/+0							125
1.00-	1 1.37-4	7.87-1	1.20-	1 5.92-4	8.57-1	1.40-	l 1.69-3	8.78-1	126
1.60-	1 3.82-3	8.95-1	1.80-	1 7.60-3	9.22-1	2.00-	l 1.33-2	9.26-1	
2.50-	1 3.91-2	9.20-1	3.00-	1 8.48-2	8.84-1				
5.00-	1 7.65-1	1.05+0	7.07-	1 2.54±n	1.04+0	1 00+4	7.16+0	9 88-1	130
		9.71-1		0 4.23+1			6.55+1		130
T. 4T.	. 1.07.1	J.,1 I	2.001	V 7.4J[1	J.17 I	2.501	, 0.3341	J.JU-1	
	1 9.40-2			1 3.16-1			l 7.57-1		132
	1 1.44+0			1 2.30+0			L 3.67+0		
		1.00+0			9.99-1		1.86+1		
		1.02+0			1.02+0		4.26+1	9.81-1	
2.20+	0 5.34+1	1.00+0	2.30+	0 5.74+1	9.83-1	2.40+0	6.32+1	9.93-1	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	$\sigma^{ m Exper}$	σ^{Exper}	$\boldsymbol{E_1}$	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	σ ^{Exper}	σ ^{Exper}	···
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
	1 0 00 0	1 0010	2 20 :		1 1010	2 70	1 0 50 1	1 0010	125
	1 9.20-2			l 1.70-1			1 2.50-1		135
	1 3.70-1			L 6.60-1			1 8.80-1		
	1 1.10+0 1 1.90+0			l 1.30+0 l 2.40+0			1 1.60+0 1 2.80+0		
						4 04.			
	1 3.30+0			1 4.40+0			0 5.70+0		
	0 7.90+0			9.70+0			0 1.30+1		
	0 1.60+1			0 1.90+1		1.61+	0 2.20+1	8.39-1	
1./1+	0 2.40+1	7.90-1	1.81+	3.00+1	8.66-1				
5.00-	1 6.76-1	9.26-1		1 1.32+0		7.00-	1 2.31+0	9.77-1	137
8.00-	1 3.54+0	9.70-1	1.00+	0 6.90+0	9.52-1	1.20+	0 1.15+1	9.41-1	
	0 1.74+1			0 2.44+1		1.80+	0 3.25+1	9.50-1	
2.00+	0 4.15+1	9.55-1	2.20+	0 5.07+1	9.50-1				
1.50+	0 2.06+1	9.37-1	2.00+	0 4.61+1	1.06+0	2.25+	0 5.57+1	9.97-1	143
	0 6.88+1			7.99+1				1.01+0	
1.00+	0 6.96+0	9.60-1	2.00+	0 4.26+1	9.81-1				149
1 401	ი ე ፈ1⊥1	1 01±0	1 001	N 3 %411	1 01±0	2 001	በ ለ ፍደታ1	l 1.05+0	151
	·0 2.61+1 ·0 5.58+1			0 3.46+1 0 6.57+1		2.00+	U 4.33+1	1.03+0	13 1
2.20	0 0.5071	1.05.0	2,707		1.00.0				
30	Zinc		Fluoresc	ence yie	1d = 0.4	7			
7.00-	1 1.49+0	8.49-1	9.00-	1 3.54+0	8.91-1	1.10+	0 5.33+0	7.31-1	27
1.304	0 8.31+0	7.09-1	1.50+	0 1.41+1	8.20-1	1.70+	0 1.73+	1 7.36-1	
1.904	0 2.54+1	8.27-1	2.10+	0 2.75+1	7.12-1	2.30+	0 3.01+	1 6.40-1	
2.501	0 3.45+1	6.18-1							
2,504	-0 5.34+1	9,56-1	3.00+	0 7.80+1	9.86-1	4.00+	0 1.34+2	2 1.05+0	52
	0 1.52+2			0 1.71+2				2 1.00+0	
	0 2.17+2			0 2.51+2				2 1.02+0	
	0 3.23+2			0 3.03+2				2 1.06+0	
1.05+	-1 3.39+2	1.03+0		1 3.58+2		1.20+	1 3.82+2	2 1.10+0	
4.50-	1 3.00-1	Ŕ. 44-1	5.60-	1 5.00-1	6.22-1	6.60-	1 1.60+0	0 1.12+0	53
	1 2.60+0				1.01+0			0 1.06+0	
	+0 7.00+0				9.71-1			1 9.72-1	
	0 1.40+1				9.66-1			1 9.60-1	
	0 1.4011				9.30-1			1 9.35-1	
	0 3.19+1		_,,,,,					·,- - -	
7 00	.1 2 4210	1 5010	1 001	0 6.42+0	1 1710	1 // 1	.n 1 57±	1 1.10+0	56
	·1 2.63+0 ·0 2.00+1			0 6.42+0				1 1.10+0 1 9.58-1	50
	FO 2.00+1 FO 4.25+1			0 2.6/+1				1 1.07+0	
	+0 4.25+1 +0 7.62+1				1.10+0			2 1.14+0	
	+0 7.62+1 +0 1.11+2				2 1.14+0			2 1.14+0	
	+0 1.11+2 +0 1.54+2				2 1.22+0			2 1.10+0	
1		0.00 1	1 05	1 7 05 0	0.064	0 55	1 0 00	0 0 00 1	E 7
	-1 1.72-3				8.86-1			2 9.09-1	57
	-1 5.39-2				7.08-1	3.60-	1 9.8/-	2 6.77-1	
3.90	-1 1.15-1	5.69-1	4.15-	1 1.53-1	1 5.90-1				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	$\sigma^{ m Exper}$	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
2.00-	-1 1.40-2	1.47+0	2.50-	1 3.80-2	1.31+0	3.00-	-1 7.80-2	1.17+0	73
3.50	-1 1.50-1	1.16+0	4.00-	1 2.80-1	1.25+0	4.50	-1 3.90-1	1.10+0	
	+0 5.60+0			0 7.50+0			+0 9.70+0		86
1.40	+0 1.50+1	1.05+0	1.60+	0 2.16+1	1.07+0	1.80	+0 2.92+1	1.08+0	
	+0 3.78+1			0 4.68+1			+0 5.56+1		
	+0 6.42+1			0 7.14+1		3.00-	+0 7.76+1	9.80-1	
	-1 6.08-5 -1 5.30-4			1 1.34-4 1 9.73-4			-1 2.74 - 4 -1 1.72-3		108
			2		. 0.20 1	1.50	1 1.,2 5	, ,,,,,	
7.00	+0 2.30+2	9.33-1							114
	-1 1.30-2 -1 1.41-1			1 3.41-2 1 2.34-1			-1 7.71-2 -1 3.83-1		115
5.00	-1 5.70-1	1.07+0		1 9.63-1			-1 1.61+0		
	-1 2.49+0			1 3.61+0			+0 5.13+0		
	+0 7.38+0			0 9.25+0			+0 1.20+1		
	+0 1.38+1			0 1.60+1			+0 1.84+1		
	+0 2.21+1 +0 3.33+1		1.804	0 2.61+1	9.63-1	1.90-	+0 2.95+1	9.61-1	
7.00	+0 2.06+2	8.35-1							125
	-1 6.37-2			1 2.23-1		5.00	-1 5.22-1	9.84-1	132
	-1 1.01+0			1 1.69+0			-1 2.68+0		
	+0 5.46+0			0 9.24+0			+0 1.43+1		
	+0 2.03+1			0 2.78+1			+0 3.47+1		
2.20	+0 4.28+1	1.00+0	2.304	0 4.93+1	1.05+0	2.40-	+0 5.17+1	1.01+0	
	-1 4.84-1			1 9.48-1			-1 1.62+0		137
	-1 2.52+0			0 5.27+0			+0 8.77+0		
	+0 1.35+1			0 1.96+1		1.80-	+0 2.55+1	9.41-1	
2.004	+0 3.27+1	9.46-1	2.20+	0 4.06+1	9.50-1				
	+0 5.31+0			0 7.31+0		1.20-	+0 8.34+0	8.90-1	152
	+0 1.02+1			0 1.25+1		1.50-	+0 1.53+1	8.90-1	
	+0 1.78+1			0 1.97+1			+0 2.35 + 1		
	+0 2.66+1			0 2.77+1			+0 3.24+1		
	+0 3.64+1			0 4.01+1			+0 4.13+1		
	+0 4.31+1 +0 5.44+1			-0 4.68+1 -0 5.98+1			+0 4.95+1 +0 6.20+1		
2.00	· O O. 7411	,.uu-1	2.307	U J. 30T.	0.03-I	3.00	· U U.ZUT]	1.03-1	
31	Gallium		Fluoresc	ence yie	eld = 0.5	07			
	-1 3.00-1		6.00-	1 6.00-1	7.93-1	7.00	-1 1.10+0	8.46-1	53
	-1 1.80+0		9.00-	1 2.70+0	9.01-1	1.00-	+0 4.10+0	9.84-1	
	+0 5.30+0		1.20+	0 7.60+0	1.06+0	1.30-	+0 8.90+0	9.85-1	
	+0 1.11+1			0 1.36+1		1.60-	+0 1.61+1	1.02+0	
	+0 1.88+1		1.80+	0 2.19+1	1.03+0	1.90-	+0 2.48+1	1.02+0	
2.00	+0 2.83+1	1.03+0							

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium*.b—Continued

$\boldsymbol{E_1}$	σ^{Exper}	σ^{Exper}	E_{i}	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	o ^{ECPSSR}	Ref.
1.00+0	4.00+0	9.60-1	1.20+0	6.40+0	8.90-1	1.40	0+0 9.20	+0 8.29-1	86
	1.28+1		1.80+0	1.74+1	8.18-1	2.00	0+0 2.29	+1 8.34-1	
	2.89+1			3.47+1		2.60	0+0 3.94	+1 8.05-1	
2.80+0	4.21+1	7.41-1	3.00+0	4.21+1	6.50-1				
	1.03+1			1.22+1				+1 9.46-1	122
	1.74+1		1.80+0	2.01+1	9.45-1	1.90	0+0 2.25	+1 9.25-1	
2.00+0	2.48+1	9.03-1							
2 Ge	ermaniu	n	Fluoresce	ence yie	1d = 0.53	35			
	2.80+0			1.00+1				+1 9.72-1	38
-	3.50+1			5.40+1		-		+1 1.00+0	
	9.70+1			1.05+2		5.00	0+0 1.20	+2 9.74-1	
.50+0	1.50+2	1.07+0	6.00+0	1.60+2	1.03+0				
.00+0	2.30+0	7.33-1	2.25+0	2.20+1	7.72-1	3.00	0+0 4.00	+1 7.61-1	47
.00-1	3.00-1	1.08+0	6.00-1	5.00-1	9.04-1	7.0	0-1 9.00	-1 9.36-1	53
.00-1	1.40+0	9.21-1	9.00-1	2.00+0	8.92-1	1.0	0+0 2.80	+0 8.92-1	
.10+0	3.70+0	8.78-1	1.20+0	4.80+0	8.77-1	1.3	0+0 6.00	+0 8.68-1	
.40+0	7.20+0	8.43-1	1.50+0	8.70+0	8.42-1			+1 8.95-1	
	1.22+1		1.80+0	1.41+1	8.47-1	1.9	0+0 1.60	+1 8.41-1	
. 00+0	1.85+1	8.56-1							
.00+0	5.44+1	1.04+0							94
.00-1	3.66-3	8.93-1	3.00-1	3.07-2	9.48-1	3.5	0-1 5.56	-2 8.59-1	115
	1.08-1	_		1.71-1				-1 9.57-1	
	5.45-1			9.07-1				3+0 9.41-1	
	2.10+0			2.94+0				+0 9.42-1	
	5.17+0			6.37+0				0+0 9.49-1	
	1.02+1 1.59+1) 1.18+1) 1.83+1				3+1 9.58-1 3+1 9.53-1	
. 60+0	1.35+1	9.33-1	1.50+0	1.0371	9.01-1	2.0	0+0 2.00	171 9.33-1	
	8.30-2			1.20-1				-1 1.22+0	135
	2.10-1			3.40-1				1.00+0	
	5.30-1			6.40-1				9.01-1	
	1.10+0			1.30+0)+0 7.75-1	
	2.30+0			3.40+0				+0 8.20-1	
	5.40+0 1.10+1			7.50+0 1.20+1	8.61-1 8.20-1)+0 8.18-1)+1 8.29-1	
	rsenic	2.2 4 .	Fluoresce						
		_		-					
	1.00-1			3.00-1)-1 7.79-1	53
	9.00-1 2.80+0			1.40+0 3.80+0)+0 9.15-1)+0 9.05-1	
	6.00+0			7.40+0)+0 9.03 - 1)+0 9.22 - 1	
	1.04+1				9.35-1			+1 9.42-1	
	1.59+1		1.0010		1			· · · · · ·	
. 00.0									

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ ^{Exper}	E_1	σ^{Exper}	$\sigma^{E_{xper}}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
1.00+0	2.00+0	1.11+0	2.00+0	1.50+1	1.11+0				39
	7.16-2			2.91-1		8.0	0-1 8.49	-1 9.97-1	61
1.00+0	1.86+0	1.03+0	1.20+0	2.81+0	8.77-1	1.4	0+0 4.41	HO 8.68-1	
	6.54+0		1.80+0	8.57+0	8.37-1	2.0	0+0 1.15+	⊦1 8.54 - 1	
3.00+0	3.42+1	9.92-1							94
	2.26+2			L 2.74+2				+2 1.16+0	
	2.98+2			1 3.22+2	1.22+0	2.0	0+1 3.28	1.21+0	
2.20+1	3.10+2	1.12+0							
	3.19-1			8.28-1				HO 9.93-1	113
	3.18+0			4.89+0		1.6	0+0 7.21	+0 9.70 - 1	
	1.04+1		2.00+0	1.34+1	9.95-1	2.2	0+0 1.62-	1 9.52-1	
40+0	1.90+1	9.04-1							
.00+0	1.50+2	1.10+0							114
2.00-1	2.08-3	1.19+0	2.50-1	L 6.20-3	9.97-1	3.0	0-1 1.44	-2 9.16-1	115
	3.59-2			1 5.86-2				-2 9.48-1	113
	1.52-1			1 3.06-1				1 1.03+0	
	8.70-1			1.28+0				0 9.93-1	
. 10+0	2.39+0	9.78-1		3.15+0				0 9.84-1	
1.40+0	5.05+0	9.94-1	1.50+0	5.88+0	9.48-1			0 9.94-1	
1.70+0	8.46+0	9.63-1	1.80+0	9.83+0	9.60-1			1 9.57-1	
2.00+0	1.28+1	9.51-1							
7.00+0	1.54+2	1.13+0							125
55 B1	romine		Fluoresce	ence yie	ld = 0.6	15			
5.00-1	3.34-1	1.50+0	8.00-1	l 7.93-1	1 24+0	1.0	n+0 1 564	+0 1.14+0	61
	2.71+0			4.47+0				0 1.1410	01
	8.31+0			1.04+1		2.0		1.0410	
.50+0	4.00+0	8.29-1	2.00+0	9.95+0	9 33-1	2 2	5±∩ 1 20±	-1 9.00-1	143
			2.75+0			3.0	0+0 2.95+	1 1.05+0	143
6 Kı	rypton		Fluoresce	ence yie	ld = 0.6	43			
.50+0	5.90+0	1.56+0	2.00+0	1 30+1	1.54+0	2 5	∩+∩ 2 1∩+	-1 1.41+0	40
	4.30+1				1.48+0			1 1.50+0	70
	7.70+1							1 1.50.0	
	6.23+0		2.00+0	1.32+1	1.56+0	2.5	0+0 2.25+	-1 1.51+0	48
0+0	3.66+1	1.61+0	3.50+0 5.00+0	4.74+1	1.49+0	4.0	0+0 6.384	-1 1.55+0	
.50+0	7.92+1	1.55+0	5.00+0	1.02+2	1.67+0				
.00+0	3.15+1	1.38+0							65
00-1	7 10-2	ደ ደዩ 1	8.16-1	5 20-1	0 07-1	0.1	5_1 7 00	.1 0 00 1	۲۵
	1.00+0		0.10-	1 3.20-1	J.J/-1	9.1	3TU \ 30.	·1 8.99-1 ·0 8.95-1	68
	6.80+0			. L.ZUTU	7.2U-1	Τ. Ο.	JTU 4.3U1	-∪ 0.93 - 1	
. 0010	0.00TU	0.03-1							

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1	$\sigma^{ m Exper}$	σ^{Exper}	E_1	$\sigma^{ m Exper}$	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	- (MeV)	(barn)	σ ^{ECPSSR}	Ref.
			(1416.4.)	(oaiii)		(IVICY)	(baili)		Rei.
37	Rubidium		Fluoresc	ence yie	1d = 0.6	667			
4									
1.00)+0 5.80-1	/.19-1	2.25+	0 7.50+0	8.17-1	3.00+	0 1.50+1	8.12-1	47
		4							
)-1 2.77-2)+0 9.27-1			1 1.24-1 0 1.32+0			1 4.08-1		61
)+0			0 1.32+0 0 4.47+0			0 2.37+0 0 5.43+0		
1.00	3.02.0	2.02.0	1.00	0 4.47.0	0.71 1	2.001	0 3.43.0	0.00-1	
1.00	0+0 8.00-1	9.92-1	1.50+	0 2.90+0	9.83-1	2.00+	0 6.90+0	1.03+0	72
2.50)+0 1.10+1	9.20-1	3.00+	0 2.00+1	1.08+0				
2 20)+1 2.21+2	1 05±0	2 101	1 2.08+2	0 60-1	6 601	1 2 2012	0 00 1	104
2.20	JT1 2.21T2	1.05+0	3.10	1 2.0072	9.49-1	4.40+	1 2.09+2	9.90-1	104
	-1 5.75-3			1 1.15-2	5.18-1	4.50-	1 2.32-2	6.16-1	111
5.00)-1 3.51-2	5.94-1	6.00-	1 8.00-2	6.44-1	7.00-	1 1.70-1	7.55-1	
1 50)+0 2.67+0	0.05.1	2 101	0 7 4110	0 60 1	0 (01	0 1 00:1	0 05 1	1/0
)+0 2.6/+0)+0 1.89+1			0 7.41+0 0 2.45+1		2.60+	0 1.23+1	9.33-1	148
0.10	1.05.1	J.50 I	3.00.	0 2.45.1	0.70 1				
38	Strontiu	m	Fluoresc	ence yie	1d = 0.6	59			
6.00)-1 7.97-2	8 56-1	8 AA-	1 3.64-1	1 30±0	1 004	0 7.02-1	1 1310	61
)+0 1.18+0			0 1.81+0			0 7.02-1 0 2.69+0		01
	+0 3.94+0			0 5.28+0		2.00	2.07.0	7.30 1	
3.00)+0 1.23+1	8.18-1							94
4 00)-1 9.88-3	6 11-1	4 50-	1 2.21-2	7 99-1	5 00-	1 3.42-2	7 81-1	111
)-1 7.39-2			1 1.44-1			1 2.06-1		111
	0-1 3.32-1			0 5.19-1			0 7.26-1		
1.20	0+0 1.03+0	9.01-1		0 1.52+0		1.50+	0 1.81+0	7.83-1	
	TT				••				
39	Yttrium		Fluoresc	ence yie	1d = 0.	/1			
2.50)+0 7.44+0	9.62-1	3.00+	0 1.25+1	1.03+0	4.00+	0 2.54+1	1.10+0	52
4.50)+0 3.20+1	1.09+0	5.00+	0 3.56+1	9.92-1		0 5.22+1		
6.50	0+0 6.09+1	1.09+0	7.00+	0 5.84+1	9.36-1	8.00+	0 7.27+1	9.67-1	
)+0 9.60+1			0 9.50+1			1 1.10+2		
1.05	5+1 1.02+2	9.84-1	1.10+	1 1.11+2	1.02+0	1.20+	1 1.03+2	8.73-1	
3 00)+0 9.30+0	7 66-1	5 004	0 2.80+1	7 81-1				59
3.00	710 7.3010	7.00-1	5.001	0 2.00+1	7.01-1				39
	0-1 7.20-2			1 2.20-1	1.03+0		0 4.80-1		61
	0+0 8.81-1			0 1.43+0		1.60+	0 2.11+0	9.56-1	
1.80)+0 3.09+0	9.87-1	2.004	0 3.94+0	9.30-1				
1.00)+0 4.10 - 1	8.59-1	1.204	0 7.70-1	8.68-1	1.40+	0 1.30+0	8.91-1	86
	0+0 1.90+0			0 2.80+0			0 3.70+0		
	0+0 4.70+0			0 5.80+0			0 7.00+0		
	0+0 8.10+0			0 9.20+0					

J. Phys. Chem. Ref. Data, Vol. 18, No. 1, 1989

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

25+0 1.20+0 1.18+0	
25+0 1.20+0 1.18+0	Ref.
25+0 1.20+0 1.18+0	
50+0 9.20+0 1.19+0 00+0 2.13+1 9.20-1 6.00+0 5.69+1 1.16+0 1.40+1 1.56+2 1.16+0 00+1 1.14+2 1.16+0 1.20+1 1.49+2 1.26+0 1.40+1 1.56+2 1.16+0 60+1 1.85+2 1.26+0 1.80+1 1.92+2 1.22+0 2.00+1 2.13+2 1.29+0 20+1 2.06+2 1.20+0 Zirconium Fluorescence yield = 0.73 30-1 1.20-4 3.33-1 3.25-1 1.00-3 3.39-1 4.20-1 4.00-3 3.68-1 54-1 8.75-3 5.59-1 5.10-1 1.20-2 4.55-1 60+2 1.35+2 1.39+0 3.00+0 7.66-1 3.00+0 7.50+0 7.59-1 4.50-1 3.51-3 4.09-1 4.50-1 5.69-3 3.79-1 5.00-1 1.75-2 7.23-1 1.00-1 6.28-2 6.40-1 9.00-1 2.10-1 8.28-1 1.00+0 3.24-1 8.76-1 1.00+0 4.56-1 8.85-1 1.20+0 5.88-1 8.50-1 1.30+0 7.74-1 8.59-1 4.00-0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 1.50-1 1.30-0 7.74-1 8.59-1 4.00-1 6.28-2 8.09-1 7.00-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1 0.00+0 6.35+1 1.19+0 1.20-0 6.35+1 1.19+0 1.20-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1 0.00+0 6.35+1 1.19+0	5
00+1 1.14+2 1.16+0	
60+1 1.85+2 1.26+0	5
Zirconium Fluorescence yield = 0.73 30-1 1.20-4 3.33-1 3.25-1 1.00-3 3.39-1 4.20-1 4.00-3 3.68-1 54-1 8.75-3 5.59-1 5.10-1 1.20-2 4.55-1 60+2 1.35+2 1.39+0 3 00+0 3.10-1 8.38-1 2.25+0 3.60+0 7.66-1 3.00+0 7.50+0 7.59-1 4 00-1 3.51-3 4.09-1 4.50-1 5.69-3 3.79-1 5.00-1 1.75-2 7.23-1 11 00-1 6.28-2 6.40-1 9.00-1 2.10-1 8.28-1 1.00+0 3.24-1 8.76-1 10+0 4.56-1 8.85-1 1.20+0 5.88-1 8.50-1 1.30+0 7.74-1 8.59-1 40+0 9.49-1 8.28-1 1.50+0 1.28+0 8.98-1 00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 11 00+0 6.00+1 1.13+0 11 75-1 5.69-4 5.03-1 3.00-1 1.15-3 6.09-1 3.50-1 2.91-3 6.65-1 80-1 4.38-3 6.57-1 4.00-1 6.34-3 7.38-1 5.00-1 1.88-2 7.77-1 00-1 4.26-2 8.09-1 7.00-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1	
30-1 1.20-4 3.33-1 3.25-1 1.00-3 3.39-1 4.20-1 4.00-3 3.68-1 54-1 8.75-3 5.59-1 5.10-1 1.20-2 4.55-1 5.10-1 1.20-2 4.55-1 60+2 1.35+2 1.39+0 300+0 3.10-1 8.38-1 2.25+0 3.60+0 7.66-1 3.00+0 7.50+0 7.59-1 4.50-1 5.69-3 3.79-1 5.00-1 1.75-2 7.23-1 11.00-1 6.28-2 6.40-1 9.00-1 2.10-1 8.28-1 1.00+0 3.24-1 8.76-1 1.0+0 4.56-1 8.85-1 1.20+0 5.88-1 8.50-1 1.30+0 7.74-1 8.59-1 40+0 9.49-1 8.28-1 1.50+0 1.28+0 8.98-1 00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 11.00+0 6.00+1 1.13+0 11.00+0 6.00+1 1.13+0 11.00+0 6.00+1 1.13+0 11.00+0 6.35+1 1.19+0 12.00+0 6.35+1 1.19+0 12.00+0 6.35+1 1.19+0 12.00+0 6.35+1 1.19+0 12.00+0 6.35+1 1.19+0 12.00+0 6.35+1 1.19+0 12.00+0 6.35+1 1.19+0 12.00+0 6.35+1 1.19+0 12.00+0 6.35+1 1.19+0 13.00-1 4.26-2 8.09-1 7.00-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1	
54-1 8.75-3 5.59-1 5.10-1 1.20-2 4.55-1 60+2 1.35+2 1.39+0 3 00+0 3.10-1 8.38-1 2.25+0 3.60+0 7.66-1 3.00+0 7.50+0 7.59-1 4 00-1 3.51-3 4.09-1 4.50-1 5.69-3 3.79-1 5.00-1 1.75-2 7.23-1 11 00-1 6.28-2 6.40-1 9.00-1 2.10-1 8.28-1 1.00+0 3.24-1 8.76-1 1 10+0 4.56-1 8.85-1 1.20+0 5.88-1 8.50-1 1.30+0 7.74-1 8.59-1 40+0 9.49-1 8.28-1 1.50+0 1.28+0 8.98-1 00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 11 00+0 6.00+1 1.13+0 11 11 11 75-1 5.69-4 5.03-1 3.00-1 1.15-3 6.09-1 3.50-1 2.91-3 6.65-1 11 80-1 4.38-3 6.57-1 4.00-1 6.34-3 7.38-1 5.00-1 1.88-2	
60+2 1.35+2 1.39+0 3 00+0 3.10-1 8.38-1 2.25+0 3.60+0 7.66-1 3.00+0 7.50+0 7.59-1 4 00-1 3.51-3 4.09-1 4.50-1 5.69-3 3.79-1 5.00-1 1.75-2 7.23-1 11 00-1 6.28-2 6.40-1 9.00-1 2.10-1 8.28-1 1.00+0 3.24-1 8.76-1 1 10+0 4.56-1 8.85-1 1.20+0 5.88-1 8.50-1 1.30+0 7.74-1 8.59-1 40+0 9.49-1 8.28-1 1.50+0 1.28+0 8.98-1 1 00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 1 00+0 6.00+1 1.13+0 1 1 75-1 5.69-4 5.03-1 3.00-1 1.15-3 6.09-1 3.50-1 2.91-3 6.65-1 1 80-1 4.38-3 6.57-1 4.00-1 6.34-3 7.38-1 5.00-1 1.88-2 7.77-1 00-1 4.26-2 8.09-1 7.00-1 8.03-2 <td< td=""><td>7</td></td<>	7
00+0 3.10-1 8.38-1 2.25+0 3.60+0 7.66-1 3.00+0 7.50+0 7.59-1 4 00-1 3.51-3 4.09-1 4.50-1 5.69-3 3.79-1 5.00-1 1.75-2 7.23-1 11 00-1 6.28-2 6.40-1 9.00-1 2.10-1 8.28-1 1.00+0 3.24-1 8.76-1 10+0 4.56-1 8.85-1 1.20+0 5.88-1 8.50-1 1.30+0 7.74-1 8.59-1 40+0 9.49-1 8.28-1 1.50+0 1.28+0 8.98-1 00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 11 00+0 6.00+1 1.13+0 11 75-1 5.69-4 5.03-1 3.00-1 1.15-3 6.09-1 3.50-1 2.91-3 6.65-1 11 80-1 4.38-3 6.57-1 4.00-1 6.34-3 7.38-1 5.00-1 1.88-2 7.77-1 100-1 4.26-2 8.09-1 7.00-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1	
00-1 3.51-3 4.09-1	0
00-1 6.28-2 6.40-1 9.00-1 2.10-1 8.28-1 1.00+0 3.24-1 8.76-1 10+0 4.56-1 8.85-1 1.20+0 5.88-1 8.50-1 1.30+0 7.74-1 8.59-1 40+0 9.49-1 8.28-1 1.50+0 1.28+0 8.98-1 1.30+0 7.74-1 8.59-1 40+0 9.49-1 2.00+0 3.34+0 9.89-1 1.30+0 7.74-1 8.59-1 40+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 1.35-1 8.65-1 1.35-1	.7
10+0 4.56-1 8.85-1 1.20+0 5.88-1 8.50-1 1.30+0 7.74-1 8.59-1 40+0 9.49-1 8.28-1 1.50+0 1.28+0 8.98-1 1.00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 11 11 11 11 11 11 11 11 11 11 11 11 1	.1
40+0 9.49-1 8.28-1 1.50+0 1.28+0 8.98-1 00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 11 00+0 6.00+1 1.13+0 11 75-1 5.69-4 5.03-1 3.00-1 1.15-3 6.09-1 3.50-1 2.91-3 6.65-1 11 80-1 4.38-3 6.57-1 4.00-1 6.34-3 7.38-1 5.00-1 1.88-2 7.77-1 00-1 4.26-2 8.09-1 7.00-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1	
00+0 3.77-1 1.02+0 2.00+0 3.34+0 9.89-1 11 00+0 6.00+1 1.13+0 11 75-1 5.69-4 5.03-1 3.00-1 1.15-3 6.09-1 3.50-1 2.91-3 6.65-1 11 80-1 4.38-3 6.57-1 4.00-1 6.34-3 7.38-1 5.00-1 1.88-2 7.77-1 00-1 4.26-2 8.09-1 7.00-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1	
00+0 6.00+1 1.13+0 75-1 5.69-4 5.03-1	
75-1 5.69-4 5.03-1	3
80-1 4.38-3 6.57-1 4.00-1 6.34-3 7.38-1 5.00-1 1.88-2 7.77-1 00-1 4.26-2 8.09-1 7.00-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1 00+0 6.35+1 1.19+0 12	4
00-1 4.26-2 8.09-1 7.00-1 8.03-2 8.19-1 8.00-1 1.35-1 8.24-1 00+0 6.35+1 1.19+0 12	.8
00+0 6.35+1 1.19+0	
50+0 1 15+0 8 07-1 2 10+0 3 20+0 8 25-1 2 5010 5 2010 7 20 4	5
	8
10+0 8.67+0 8.11-1 3.60+0 1.14+1 7.52-1	
Niobium Fluorescence yield = 0.74	
· · · · · · · · · · · · · · · · · · ·	.4
50+0 5.20+0 4.63+0 1.70+0 1.10+1 6.63+0 1.90+0 1.30+1 5.61+0	
10+0 1.50+1 4.84+0 2.30+0 1.70+1 4.25+0 2.50+0 2.50+1 4.98+0	
13+0 3.60-1 8.18-1 1.34+0 6.50-1 8.32-1 1.55+0 1.00+0 8.03-1 8	7
76+0 1.60+0 8.67-1 1.97+0 2.10+0 8.15-1 2.18+0 3.00+0 8.71-1	
39+0 3.60+0 8.10-1 2.60+0 4.50+0 8.07-1 2.70+0 4.80+0 7.80-1	
00+0 6.80+0 8.45-1	4
00-1 7.07-5 8.49-1 2.40-1 3.15-4 9.75-1 2.80-1 9.61-4 1.10+0 12	6
20-1 2.14-3 1.11+0 3.60-1 4.28-3 1.17+0 4.00-1 7.65-3 1.22+0	
50-1 1.39-2 1.25+0 5.00-1 2.32-2 1.28+0	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ₁	$\sigma^{ m Exper}$	σ^{Exper}	E_1	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	— (MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
			·		·				
	FO 9.38-1		2.10	0 2.59+0	8.36-1	2.60+	-0 4.50+0	8.07-1	148
3.10-	+0 7.18+0	8.25-1	3.60	0 1.04+	1 8.35-1				
42	Molybder	ıum	Fluores	ence vi	eld = 0.7	765			
	_			,					
2.40	+0 8.00+0	2.20+0							1
2.50	-1 1.90-4	4 6.55-1	3.00	-1 5.50-4	4 5.86-1	3.50-	1 1.60-3	3 7.01-1	3
	-1 3.30-3				2 1.13+0		0 2.30-1		-
1.22	+0 4.40-1	1 9.92-1	1.61	1.20+	0 1.08+0				
2 40	-1 5.50-4	2.53+0	2 60-	-1 8 20-	4 2.16+0	2 80-	-1 1.20-3	1 OF±0	6
	-1 1.80-3				3 1.82+0		1 3.60-3		U
	-1 4.70-3				3 1.78+0		1 8.10-3		
	-1 1.30-2				2 1.12+0		1 8.50-2		
	-1 2.10-1				1 1.17+0		HO 5.30-1		
, ,,	1 5 60 6	2 (50 1							7
4.34	-1 5.62-3	6.50-1							7
1.60	+2 1.18+2	2 1.34+0							30
	+0 3.13+0				0 8.18-1		1.00+		52
	+0 1.31+1				1 8.15-1		+0 2.36+1		
	+0 2.17+1 +0 4.12+1				1 5.74-1 1 6.65-1		⊦0 3.80+1 ⊦1 5.34+1		
	+1 4.67+2				1 8.79-1		+1 7.11+:		
	-1 4.72-3				2 9.68-1		-1 9.68-2		61
	+0 2.18-3				1 9.46-1		+0 6.79-1		
1.60	+0 1.13+0	J 1.U3+U	1.80-	FU 1.48+	0 9.39-1	2.00	+0 2.05+0	9.49-1	
1.00	+0 2.35-1	1 1.05+0	1.20-	+0 4.21 -	1 9.90-1	1.40-	F0 6.95-1	1 9.75-1	77
1.50	+0 8.71-3	1 9.77-1	1.60	+0 1.10+	0 1.00+0	1.80-	HO 1.58+0	0 1.00+0	
	+0 2.20+0				0 1.03+0		+0 3.68+0		
	+0 4.06+0			+0 4.42+	0 9.78-1	2.80-	+0 5.07+0	9.21-1	
3.00	+0 5.52+0	J 8.4U-1							
5.00	-1 1.40-2	2 1.03+0	7.50	-1 7.50-	2 9.91-1	1.00-	FO 2.30-	1 1.03+0	95
	+0 5.20-				1 1.11+0		+0 2.40+0		
2.50	+0 4.50+0	0 1.11+0							
7 00.	+0 3.64+	1 0 / 5 1							125
7.00	TU 3.04T.	1 9.43-1							123
3.90	-1 4.10-3	3 1.01+0	4.30	-1 6.80-	3 1.02+0	4.80	-1 1.10-2	2 9.78-1	135
	-1 1.90-2				2 9.55-1		-1 3.70-2		
	-1 5.00-2				2 8.23-1		-1 9.90-2		
	-1 1.10-1				1 9.20-1		+0 2.20-		
	+0 3.10-1 +0 6.80-1				1 9.83-1		+0 5.40-1 +0 1.10+0		
	+0 6.80 +0 1.20+0				1 8.46-1 0 9.36-1	1.01-	-O 1.10+0	0 9.03 - 1	
/1	. 5 1.201	0.70 1	1.01	. 5 1.501	U J.JU I				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E,	$\sigma^{\rm Exper}$	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σECPSSR	Ref.
	1.31-2			3.17-2	1.04+0			-2 1.05+0	144
	1.04-1			1.56-1				1.07+0	
	4.54-1			7.52-1				5+0 1.06+0	
	1.64+0			2.24+0				3+0 1.05+0	
	3.73+0			4.63+0				2+0 1.02+0	
	6.66+0			7.80+0				+0 1.01+0	
	1.32+1			1.68+1		5.00	+0 2.16	5+1 1.03+0	
3.30+0	2.52+1	9.98-1	6.00+0	3.01+1	1.02+0				
	7.09 - 1 5.55+0		2.10+0	1.97+0	7.91-1	2.60	+0 3.40)+0 7.52 - 1	148
44 R	utheniu	m	Fluoresce	ence yie	1d = 0.7	94			
7.00+0	2.63+1	9.43-1							125
45 R	hodium		Fluoresce	nce yie	1d = 0.8	80			
1.60+2	1.16+2	1.54+0							30
1.03+0	1.00-1	8.29-1	1.24+0	2.10-1	8.92-1	1 45	+0 3 40	-1 8.46-1	87
	5.20-1			7.70-1				+0 8.81-1	07
2.29+0	1.50+0	8.89-1	2.50+0	1.90+0	8.75-1			+0 8.16-1	
46 P	alladiu	n	Fluoresce	nce yie	1d = 0.8	2			
6.00-1	8.12-3	7.76-1	8.00-1	3.28-2	9.17-1	1.00	+0 7.14	-2 8.35-1	61
1.20+0	1.52-1	9.11-1		2.49-1				-1 8.64-1	O.
1.80+0	5.41-1	8.27-1	2.00+0	7.55-1	8.29-1			_ 3,7, _	
2 15-1	8.50-6	5 10-1	2 30-1	1.90-5	6 22-1	2 / 5	1 / 00		400
	6.50-5			9.70-5				-5 8.22-1 -4 7.30-1	120
2.00 1	0.50 5	7.75 1	2.75-1	9.70-3	7.74-1	3.00	-1 1.70	-4 /.30-1	
5.00-1	4.12-3	9.32-1	6.00-1	1.07-2	1.02+0	7.00	-1 2.12	-2 1.03+0	144
	3.85-2		9.00-1	6.10-2	1.07+0			-2 1.08+0	
1.20+0	1.84-1	1.10+0		3.14-1				-1 1.09+0	
	7.06-1			9.76-1				+0 1.08+0	
	1.69+0				1.06+0	2.80	+0 2.53	+0 1.04+0	
	3.09+0		3.20+0	3.55+0	1.01+0			+0 1.02+0	
	6.37+0			8.36+0	1.03+0	5.00	+0 1.06	+1 1.03+0	
5.50+0	1.30+1	1.03+0	6.00+0	1.53+1	1.01+0				
1.50+0	2.99-1	8.28-1	2 10+0	8 58-1	8.12-1	2 60	10 1 70	10 0 50 1	1/0
	2.43+0				8.65-1			+0 8.58-1 +0 8.77-1	148
	4.51+0		3.0010	4.1110	0.03-1	3.70	TU 4.40	+0 8.//-1	
67 S	ilver		Fluoresce	nce yiel	ld = 0.83	31			
ነ 70±0	5 20-1	1 2110	1 00:0	1 0010	1 5/10	0 1-			
	2.30+0		1.92+0					+0 1.69+0	1
,. 4 0+0	2.3U+U	1./9+0	2.04+0	3.30+0	1.95+0	2.88	+υ 6.30·	+0 2.91+0	
5.00-1	3.20-3	3.97-1	7.00-1	7.83-3	4.89-1	8.00	-1 1.35	-2 4.81-1	4
9.00-1	2.58-2	5.72-1	1.00+0	3.58-2	5.29-1	5.00	_ 1.00	3 4.01 I	-
					_				

 $\textbf{TABLE 2. \textit{K}-shell x-ray production by protons in target elements from beryllium to uranium}^{a,b} \\ \textbf{—Continued}$

$\boldsymbol{E}_{\mathbf{i}}$	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	$\sigma^{ m Exper}$	σ^{Exper}	E_1	σ ^{Exper}	σ ^{Exper}	_
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
1.80+	0 4.40-1	8.32-1	2.00+	0 4.90-1	6.64-1	2.10+	0 5.70-1	6.64-1	5
	0 7.50-1			0 8.50-1			0 9.20-1		
	0 1.00+0			0 1.20+0			0 1.40+0		
	0 1.60+0			0 2.10+0			0 2.70+0		
	0 3.00+0			0 3.40+0		3.20	0 21,70.0	3,000 1	
2.60-	1 1.30-4	2.34+0	2.80-	1 2.00-4	2.03+0	3.00-	1 3.30-4	2.02+0	6
3.20-	1 4.90-4	1.92+0	3.40-	1 7.40-4	1.96+0	3.60-	1 1.10-3	2.03+0	
3.80-	1 1.50-3	2.00+0	4.00-	1 2.10-3	2.07+0	6.00-	1 1.10-2	1.36+0	
7.40-	1 2.40-2	1.18+0	9.35-	1 6.60-2	1.26+0	1.04+	0 9.90-2	1.26+0	
	0 1.70-1								
1.60+	2 1.09+2	1.61+0							30
	0 8.10-1			0 2.60+0			0 6.10+0		32
	0 1.00+1			0 1.40+1			0 1.90+1		
8.00+	0 2.40+1	1.10+0	9.004	0 2.90+1	1.09+0	1.00+	-1 3.60+1	1.15+0	
1.10+	1 3.90+1	1.08+0	1.20+	1 4.40+1	1.09+0	1.30+	1 5.00+1	1.12+0	
1.40+	1 5.70+1	1.17+0	1.504	1 5.90+1	1.12+0	1.70+	1 7.40+1	1.24+0	
1.80+	1 8.20+1	1.30+0	1.90+	1 7.90+1	1.20+0	2.00+	1 7.90+1	1.15+0	
2.10+	1 8.60+1	1.21+0	2.201	-1 9.80+1	1.33+0	2.30+	-1 9.80+1	1.29+0	
	1 8.40+1			1 8.50+1		2.60+	1 9.50+1	1.16+0	
	1 9.60+1			-1 9.50+1			-1 9.20+1		
1.50+	-0 3.50-1	1.21+0	2.001	-0 1.10+0	1.49+0	2.504	-0 1.70+0	1.18+0	38
	0 3.10+0			-0 4.30+0			0 5.50+0		
	0 7.80+0			0 9.50+0			0 1.10+1		
1.00+	-0 8.00-2	1.18+0	2.00	-0 8.10-1	1.10+0				39
1.00+	-0 6.50 - 2	9.60-1	2.25	+0 1.00+0	9.45-1	3.004	+0 2.30 + 0	9.50-1	47
2.50+	0 1.07+0	7.40-1	3.004	0 1.88+0	7.76-1	4.00	+0 4.18+0	8.17-1	52
4.504	0 5.49+0	8.10-1	5.004	-0 6.81+0	7.90-1	6.004	6.88+0	6.97-1	
6.50+	0 1.25+1	8.36-1	7.00	⊦ 0 1.41+1	8.18-1	8.00+	⊦0 1.88 + 1	8.58-1	
	0 2.05+1			HO 2.14+1			⊦1 2.60 + 1		
1.054	1 2.45+1	7.28-1	1.10	1 3.09+1	8.57-1	1.20	1 3.69+1	9.13-1	
1.504	+0 2.85-1 +0 2.19+0	9.83-1	2.00	+0 7.52 - 1	1.02+0	2.50	1.44+0		55
2.984	0 2.19+0	9.21-1	3.00	HO 2.42+0	9.99-1	4.97	+0 7.68+C		
	1.12+1					6.96	FO 1.48+1	8.68-1	
8.941	+0 2.36+1	8.97-1	1.09-	H1 3.22+1	9.02-1				
	-1 6.70-3			-1 2.70-2			FO 6.40-2		63
1.20	1.30-1	9.77-1	1.40-	FO 2.20-1	9.60-1	1.60-	FO 3.40-1	9.45-1	
1.80	HO 4.70-1	8.89-1	2.00-	⊦0 6.70 - 1	9.08-1				
	10 7.06-2			HO 9.88-2			HO 1.34-1		77
	HO 1.78-1			FO 2.32-1			+0 2.96-1		
	HO 3.70-1			HO 4.57-1			HO 5.54-1		
	HO 6.63-1			FO 7.82-1			HO 9.13-1		
	+0 1.05+C			FO 1.20+0			+0 1.34+0		
2.50	HO 1.49+0	1.03+0		HO 1.63+0			+0 1.77+0		
	+0 1.89+C	0 45-1	2 00-	רט ז טטדע	9.07-1	3 00-	+0 2.10+0	8 67-1	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E,	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
-									
6 00-1	0.00-4	0 00_1	6 00-1	0 40-2	1 1740	9 00	1 2 20	0 1 1010	0.7
	9.00-4 7.90-2			9.40-3 1.40-1				·2 1.18+0 ·1 1.00+0	87
	3.60-1			5.20-1				1.00+0	
	9.90-1			1.30+0		2.00	10 7.30	1 1.0240	
3.00+0	1.93+0	7.97-1							94
5 00-1	2.80-3	8 34-1	7 50-1	1.80-2	R 3R-1	1 00	±0 6 30-	-2 9.30-1	95
	1.50-1			3.00-1				1 1.07+0	93
	1.70+0					_,,,		1 1.07.0	
2.49-1	1.76-5	4.53-1	3.00-1	9.84-5	6.02-1	3.53	-1 4.09-	4 8.53-1	99
4.03-1	9.34-4	8.83-1	4.84-1	2.37-3	8.33-1			3 8.27-1	
6.35-1	8.93-3	8.56-1	7.20-1	1.54-2	8.52-1	8.10	-1 2.58-	-2 8.74-1	
	4.02-2			8.60-2		1.52	+0 2.64-	1 8.70-1	
1.72+0	4.15-1	9.09-1	1.91+0	5.80-1	9.08-1				
4.00+0	5.00+0	9.77-1	7.50+0	1.69+1	8.64-1	8.00	+0 1.83+	1 8.35-1	100
9.00+0	2.24+1	8.42-1		2.62+1				1 8.99-1	200
1.20+1	3.58+1	8.86-1	1.30+1	3.93+1	8.79-1	1.40	+1 4.29+	-1 8.79-1	
1.50+1	4.87+1	9.26-1							
4.00-1	3.22-4	3.18-1	5.00-1	1.62-3	4.82-1	6.00	-1 4.64-	-3 5.75-1	103
7.00-1	9.58-3	5.98-1	8.00-1	1.93-2	6.88-1				
2.20+1	7.22+1	9.80-1	3.10+1	8.20+1	9.25-1	4.40	+1 8.34+	1 8.64-1	104
3.50-1	3.30-4	7.26-1	4.00-1	8.17-4	8.06-1	5.00	-1 3.00-	3 8.93-1	113
	7.50-3			2.77-2		1.00	+0 7.08-	2 1.05+0	
	1.38-1			2.40-1				1 1.03+0	
1.80+0	5.23-1	9.89-1	2.00+0	7.52-1	1.02+0	2.20	+0 1.00+	0 1.01+0	
	1.45-4			2.53-4		4.00	-1 4.42-	4 4.36-1	118
	9.89-4			1.87-3		6.00	-1 5.10-	·3 6.32 - 1	
7.00-1	1.06-2	6.62-1	8.00-1	1.93-2	6.88-1				
2.00-1	2.80-6	5.60-1	2.15-1	5.50-6	5.31-1	2.30	-1 1.00-	-5 5.13-1	120
2.45-1	1.90-5	5.60-1	2.60-1	3.50-5	6.31-1	2.75	-1 5.90-	5 6.86-1	
3.00-1	1.40-4	8.57-1							
2.50-1	1.89-5	4.70-1	3.00-1	1.05-4	6.43-1	3.50	-1 3.26-	4 7.17-1	121
4.00-1	7.01-4	6.92-1	5.00-1	2.46-3	7.33-1	6.00	-1 6.62-	3 8.21-1	
	1.36-2		8.00-1	2.40-2	8.56-1	9.00	-1 4.05-	2 8.98-1	
1.00+0	6.18-2	9.13-1							
7.00+0	1.70+1	9.86-1							125
2.50-1	1.96-5	4.87-1	3.00-1	1.16-4	7.10-1	3.50	-1 3.75-	4 8.25-1	126
	1.00-3		4.50-1	2.10-3	1.08+0			3 1.08+0	
5.50-1	6.08-3	1.13+0	6.00-1	9.57-3	1.19+0				
7.07-1	1.70-2	1.02+0	1.00+0	7.30-2	1.08+0	1.41	+0 2.40-	1 1.01+0	130
	7.50-1			1.50+0					200

A. 20-1 1.60-3 1.20+0	E_{i}	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	$\sigma^{ m Exper}$	**************************************
5.50-1 6.50-3 1.21+0 6.00-1 9.10-3 1.13+0 6.40-1 1.20-2 1.11+0 6.90-1 1.70-2 1.13+0 7.40-1 2.20-2 1.08+0 8.20-1 3.20-2 1.03+0 8.80-1 4.40-2 1.07+0 1.01+0 7.60-2 1.08+0 1.11+0 1.20-1 1.20+0 1.21+0 1.50-1 1.09+0 1.31+0 1.90-1 1.05+0 1.11+0 1.20-1 1.20+0 1.31+0 1.51+0 3.20-1 1.08+0 1.51+0 3.20-1 1.08+0 1.51+0 3.20-1 1.09+0 1.51+0 4.60-1 1.03+0 1.81+0 5.90-1 1.10+0 1.61+0 4.00-1 1.09+0 1.71+0 4.60-1 1.03+0 1.81+0 5.90-1 1.10+0 1.61+0 4.00-1 1.09+0 1.71+0 4.60-1 1.03+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.80+0 7.79-1 3.00+0 1.95+0 7.36-1 3.30+0 2.44+0 7.79-1 3.60+0 3.06+0 7.79-1 3.80+0 3.57+0 7.92-1 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.50+0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.60+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.50+0 1.20+0 1.00+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.50+0 1.20+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.32+1 8.98-1 1.00+0 4.00-1 8.79-1 7.78-1 2.00+0 4.79-1 7.89-1 2.00+0 5.20+0 8.53-1 2.00+0 4.74-1 7.89-1 2.00+0 4.74-1 7.89-1 2.00+0 4.74-1 7.89-1 2.00+0 4.74-1 7.89-1 2.00+0 4.30+1 8.98-1 4.00+0 3.80+1 1.30+0 1.00+0 5.40-1 1.40+0 1.40+0 2.30-1 7.55+0 1.50+0 2.55-1 1.35+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
5.50-1 6.50-3 1.21+0 6.00-1 9.10-3 1.13+0 6.40-1 1.20-2 1.11+0 6.90-1 1.70-2 1.13+0 7.40-1 2.20-2 1.08+0 8.20-1 3.20-2 1.03+0 8.80-1 4.40-2 1.07+0 1.01+0 7.60-2 1.08+0 1.11+0 1.20-1 1.20+0 1.21+0 1.50-1 1.09+0 1.31+0 1.90-1 1.05+0 1.11+0 1.20-1 1.20+0 1.31+0 1.51+0 3.20-1 1.08+0 1.51+0 3.20-1 1.08+0 1.51+0 3.20-1 1.09+0 1.51+0 4.60-1 1.03+0 1.81+0 5.90-1 1.10+0 1.61+0 4.00-1 1.09+0 1.71+0 4.60-1 1.03+0 1.81+0 5.90-1 1.10+0 1.61+0 4.00-1 1.09+0 1.71+0 4.60-1 1.03+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.80+0 7.79-1 3.00+0 1.95+0 7.36-1 3.30+0 2.44+0 7.79-1 3.60+0 3.06+0 7.79-1 3.80+0 3.57+0 7.92-1 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.50+0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.60+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.50+0 1.20+0 1.00+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.50+0 1.20+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.32+1 8.98-1 1.00+0 4.00-1 8.79-1 7.78-1 2.00+0 4.79-1 7.89-1 2.00+0 5.20+0 8.53-1 2.00+0 4.74-1 7.89-1 2.00+0 4.74-1 7.89-1 2.00+0 4.74-1 7.89-1 2.00+0 4.74-1 7.89-1 2.00+0 4.30+1 8.98-1 4.00+0 3.80+1 1.30+0 1.00+0 5.40-1 1.40+0 1.40+0 2.30-1 7.55+0 1.50+0 2.55-1 1.35+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1										
5.50-1 6.50-3 1.21+0 6.00-1 9.10-3 1.13+0 6.40-1 1.20-2 1.11+0 6.90-1 1.70-2 1.13+0 7.40-1 2.20-2 1.08+0 8.20-1 3.20-2 1.03+0 8.80-1 4.40-2 1.07+0 1.01+0 7.60-2 1.08+0 1.11+0 1.20-1 1.20+0 1.21+0 1.50-1 1.09+0 1.31+0 1.90-1 1.05+0 1.11+0 1.20-1 1.20+0 1.31+0 1.51+0 3.20-1 1.08+0 1.51+0 3.20-1 1.08+0 1.51+0 3.20-1 1.09+0 1.51+0 4.60-1 1.03+0 1.81+0 5.90-1 1.10+0 1.61+0 4.00-1 1.09+0 1.71+0 4.60-1 1.03+0 1.81+0 5.90-1 1.10+0 1.61+0 4.00-1 1.09+0 1.71+0 4.60-1 1.03+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.81+0 5.90-1 1.00+0 1.80+0 7.79-1 3.00+0 1.95+0 7.36-1 3.30+0 2.44+0 7.79-1 3.60+0 3.06+0 7.79-1 3.80+0 3.57+0 7.92-1 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.50+0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.60+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.50+0 1.20+0 1.00+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.50+0 1.20+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.32+1 8.98-1 1.00+0 4.00-1 8.79-1 7.78-1 2.00+0 4.79-1 7.89-1 2.00+0 5.20+0 8.53-1 2.00+0 4.74-1 7.89-1 2.00+0 4.74-1 7.89-1 2.00+0 4.74-1 7.89-1 2.00+0 4.74-1 7.89-1 2.00+0 4.30+1 8.98-1 4.00+0 3.80+1 1.30+0 1.00+0 5.40-1 1.40+0 1.40+0 2.30-1 7.55+0 1.50+0 2.55-1 1.35+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1	4.20-1	1.60-3	1.20+0	4.60-1	2.80-3	1.28+0	5.1	0-1 4.30)-3 1.16+0	135
8. 80-1 1. 70-2 1. 1.3+0 7. 40-1 2. 20-2 1. 08+0 8. 20-1 3. 20-2 1. 03+0 8. 80-1 4. 40-2 1. 07+0 1. 01+0 7. 60-2 1. 08+0 1. 11+0 1. 20-1 1. 20+0 1. 21+0 1. 50-1 1. 09+0 1. 31+0 1. 90-1 1. 05+0 1. 41+0 2. 60-1 1. 11+0 1. 51+0 3. 20-1 1. 08+0 1. 61+0 4. 00-1 1. 09+0 1. 71+0 4. 60-1 1. 03+0 1. 51+0 3. 20-1 1. 08+0 1. 51+0 5. 90-1 1. 10+0 1. 61+0 4. 00-1 1. 09+0 1. 71+0 4. 60-1 1. 03+0 1. 51+0 3. 20-1 1. 08+0 1. 51+0 4. 60-1 1. 03+0 1. 51+0 5. 90-1 1. 10+0 1. 51+0 5. 90-1 1. 10+0 1. 51+0 5. 90-1 1. 10+0 1. 51+0 5. 90-1 1. 10+0 1. 51+0 5. 90-1 1. 10+0 1. 51+0 5. 90-1 1. 10+0 1. 10										
8. 80-1 4. 40-2 1. 0.9+0 1. 0.140 7. 60-2 1. 0.8+0 1. 11+0 1. 20-1 1. 20-0 2. 20-0 1. 20-0 1. 20-0 2. 20-0 1. 20-0 7. 20-1 1. 20-0 2. 20-0 7. 20-0 1. 20-0 2. 20-0 7. 20-0 1. 20-0 2. 20-0 7. 20-0 1. 20-0 2. 20-0 7. 20-0 1. 20-0 2. 20-0 7. 20-0 1. 20-0 3. 20-0 7. 20-0 1. 20-0 2. 20-0 7. 20-0 1. 20-0 <td></td>										
1.21+0 1.50-1 1.09+0							1.1	1+0 1.20	0-1 1.20+0	
1.81+0 5.90-1 1.10+0 1.50+0 2.62-1 9.04-1 3.30+0 2.44+0 7.79-1 3.60+0 1.21+0 7.47-1 1.80+0 1.95+0 7.36-1 3.30+0 2.44+0 7.79-1 3.60+0 3.06+0 7.79-1 1.60+0 3.66-1 1.02+0 1.80+0 5.72-1 1.08+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.50+0 9.07-1 7.65-1 3.00+0 1.65+0 8.26-1 4.00+0 3.86+0 9.05-1 4.50+0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.60+0 2.50-1 8.58+1 1.80+0 3.80-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.00+0 8.27-1 3.00+0 1.60+0 8.01-1 3.00+0 1.60+0 8.01-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.55-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1										
1.81+0 5.90-1 1.10+0 1.50+0 2.62-1 9.04-1 3.30+0 2.44+0 7.79-1 3.60+0 1.21+0 7.47-1 1.80+0 1.95+0 7.36-1 3.30+0 2.44+0 7.79-1 3.60+0 3.06+0 7.79-1 1.60+0 3.66-1 1.02+0 1.80+0 5.72-1 1.08+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.50+0 9.07-1 7.65-1 3.00+0 1.65+0 8.26-1 4.00+0 3.86+0 9.05-1 4.50+0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.60+0 2.50-1 8.58+1 1.80+0 3.80-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.00+0 8.27-1 3.00+0 1.60+0 8.01-1 3.00+0 1.60+0 8.01-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.55-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1				1.61+0	4.00-1	1.09+0				
3.10+0 1.95+0 7.36-1 3.30+0 2.44+0 7.79-1 3.60+0 3.06+0 7.79-1 1.60+0 3.66-1 1.02+0 1.80+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 7.15-1 9.69-1 151 2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 2.00+0 3.86+0 9.05-1 4.50+0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 6.3 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.60+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.61-1 8.90+0 3.80-1 8.85-1 2.00+0 5.30-1 8.62-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.10+0 8.27-1 3.00+0 1.47+0 7.36-1 9.40+0 3.80-1 8.57-1 2.60+0 1.10+0 8.27-1 3.00+0 1.47+0 7.36-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 50+0 2.55-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.28-1 1.35+0 1.60+0 3.40-1 1.49+0 1.40+0 1.35+0 1.35+0 1.50+0 1.20+0 7.00+0 3.91-1 1.35+0 1.50+0 1.20+0 7.00+0 3.91-1 1.35+0 1.50+0 1.20+0 7.00+0 3.91-1 1.35+0 1.50+0 1.20+0 7.00+0 3.91-1 1.35+0 1.50+0 1.20+0 7.06-1 1.00+0 3.40-1 1.40+0 1.70+0 3.91-1 1.35+0 1.50+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.40+0 1.70+0 3.91-1 1.35+0 1.50+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.40+0 1.70+0 3.91-1 1.35+0 1.50+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.40+0 1.70+0 3.91-1 1.35+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.40+0 1.70+0 3.91-1 1.35+0 1.50+0 2.50+0 7.06-1 1										
3.80+0 3.57+0 7.92-1 1.60+0 3.66-1 1.02+0										148
1.60+0 3.66-1 1.02+0	3.10+0	1.95+0	7.36-1	3.30+0	2.44+0	7.79-1	3.6	0+0 3.06	5+0 7.79-1	
2.20+0 1.07+0 1.08+0 2.40+0 1.32+0 1.03+0 48 Cadmium Fluorescence yield = 0.843 2.50+0 9.07-1 7.65-1 3.00+0 1.65+0 8.26-1 4.00+0 3.86+0 9.05-1 52 4.50+0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.09+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 63 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.10+0 8.27-1 3.00+0 1.47+0 7.36-1 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 9.28-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.50+0 1.28-1 1.50+0 1.30+0 1.70-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 2.55-1 1.35+0 1.50+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 2.55-1 1.35+0 1.50+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 4.08-1 1.70+0 2.50-1 1.35+0 1.50+0 4.08-1 1.70+0 2.50+1 7.35+0 1.50+0 4.08-1 1.70+0 2.50+1 7.35+0 1.50+0 4.08-1 1.70+0 2.50+1 7.35+0 1.50+0 4.08-1 1.70+0 3.90-1 1.35+0 1.50+0 4.08-1 1.70+0 3.90-1 1.35+0 1.50+0 4.08-1 1.70+0 3.90-1 1.35+0 1.50+0 4.08-1 1.70+0 3.90-1 1.35+0 1.50+0 4.08-1 1.70+0 3.90-1 1.35+0 1.50+0 4.08-1 1.30+0 1.70-1 1.24+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70+0 2.30+0 9.86-1 1.30+0 1.30+0 1.30+0 1.70+0 2.30+0 9.86-1 1.30+0 1.30	3.80+0	3.57+0	7.92-1							
### Fluorescence yield = 0.843 2.50+0 9.07-1 7.65-1 3.00+0 1.65+0 8.26-1 4.00+0 3.86+0 9.05-1 5.24-0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.77+1 7.76-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 6.3 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.60+0 2.50-1 8.58-1 1.80+0 3.80-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.10+0 8.27-1 2.80+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 4.80+1 1.70+0 3.90-1 1.35+0 1.50+0 4.80+1 1.70+0 3.90-1 1.35+0 1.50+0 4.80+0 4.08-1 1.17+0 1.90+0 5.40-1 1.20+0 2.30+0 4.34-1 8.87-1 2.10+0 6.89-1 1.20+0 7.06-1 1.20+0 7.06-1 1.30+0 7.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 4.80+0 4.08-1 1.70+0 3.90-1 1.35+0 1.30+0 4.08-1 1.70+0 3.90-1 1.35+0 1.30+0 4.08-1 1.70+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70-1 1.20+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70-1 1.20+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70-1 1.20+0 2.30+0 9.86-1 1.30+0 1.30+0 1.70-1 1.20+0 2.30+0 9.86-1 1.30+0 2.20+0 7.06-1 1.00+0 2.30+0 9.86-1 1.30+0 2.20+0 7.06-1 1.00+0 2.30+0 9.86-1 1.30+0 2.20+0 7.0							2.0	0+0 7.15	5-1 9.69-1	151
2.50+0 9.07-1 7.65-1 3.00+0 1.65+0 8.26-1 4.00+0 3.86+0 9.05-1 52 4.50+0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 63 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.60+0 2.70-1 9.27-1 1.60+0 2.50-1 8.58-1 1.80+0 3.80-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.60+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 8.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.50+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 1.50+0 1.37+0 1.35+0 1.30+0 1.70-1 7.35+0 1.30+0 1.20+0 1.28-1 1.50+0 1.37+0 1.35+0 1.50+0 4.08-1 1.37+0 1.20+0 4.08-1 1.17+0 1.90+0 5.10-1 1.40+0 1.40+0 2.30-1 1.55+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.40+0 1.70+0 2.30-1 1.55+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.40+0 1.70+0 2.30-1 1.55+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.40+0 1.70+0 2.30-1 1.55+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.40+0 1.70+0 2.30-1 1.55+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.40+0 1.70+0 2.30-1 1.55+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.20+0 4.08-1 1.17+0 1.90+0 5.10-1 1.07+0 2.30+0 9.86-1 1.30+0	2.20+0	1.0/+0	1.08+0	2.40+0	1.32+0	1.03+0				
4.50+0 4.31+0 7.61-1 5.00+0 5.44+0 7.49-1 6.00+0 8.70+0 8.06-1 6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 63 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 63 1.60+0 2.50-1 8.58-1 1.80+0 3.80-1 8.58-1 2.00+0 5.40-1 8.09-1 8.50-1 8.58-1 2.00+0 5.40-1 8.09-1 8.50-1 8.50-1 8.50-1 8.50-1 3.00+0 1.60+0 8.01-1 8.67-1 2.00+0 5.30-1 8.82-1 2.00+0 5.30-1 8.82-1 2.00+0 5.30-1 8.82-1 2.00+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.10+0 8.27-1 3.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.50+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 1.50+0 1.28-1 1.50+0 1.30+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.49+0 1.40+0 2.30-1 1.55+0 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.49+0 1.40+0 3.91-1 1.35+0 1.55+0 1.50+0 4.08-1 1.17+0 1.20+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	48 C	admium		Fluoresce	nce yie	1d = 0.8	43			
6.50+0 8.53+0 6.71-1 7.00+0 1.17+1 7.96-1 8.00+0 1.49+1 7.92-1 8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 63 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 63 1.20+0 2.50-1 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.60+0 2.50-1 8.58-1 2.00+0 5.40-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-2 8.44-1 1.40+0 1.60-1 8.27-1 2.80+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 8.00-1 1.57-2 7.10-1 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 1.20+0 7.32+1 8.98-1 1.20+0 7.32+1 8.98-1 1.20+0 7.32+1 7.50+0 1.20+0 7.32+1 7.50+0 1.30+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 1.00+0 1.28-1 1.50+0 1.38-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.55+0 1.20+0 7.35+1 1.35+0 1.30+0 1.70-1 1.49+0 1.40+0 3.91-1 1.35+0 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.40+0 1.20+0 3.91-1 1.35+0 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.40+0 1.20+0 3.91-1 1.35+0 1.55+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	2.50+0	9.07-1	7.65-1	3.00+0	1.65+0	8.26-1	4.0	0+0 3.86	6+0 9.05-1	52
8.50+0 1.82+1 8.71-1 9.00+0 1.77+1 7.71-1 1.00+1 2.20+1 8.08-1 1.05+1 2.12+1 7.25-1 1.10+1 2.70+1 8.62-1 1.20+1 2.99+1 8.46-1 6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 6.3 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.61-1 8.00+0 2.50-1 8.58-1 1.80+0 3.80-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.10+0 8.27-1 2.80+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.40+0 2.30-1 1.55+0 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 4.08-1 1.17+0 2.20+0 7.06-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0				5.00+0	5.44+0	7.49-1				
1.05+1 2.12+1 7.25-1	6.50+0	8.53+0	6.71-1	7.00+0	1.17+1	7.96-1	8.0	0+0 1.49	9+1 7.92-1	
6.00-1 4.80-3 7.68-1 8.00-1 1.80-2 8.13-1 1.00+0 4.90-2 9.09-1 1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.40+0 1.60-1 8.67-1 8.67-1 8.58-1 1.80+0 3.80-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-2 8.44-1 2.60+0 1.10+0 8.27-1 2.80+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 2.60+0 1.10+0 8.27-1 3.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 111 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	8.50+0	1.82+1	8.71-1	9.00+0	1.77+1	7.71-1	1.0	0+1 2.20	0+1 8.08-1	
1.20+0 1.00-1 9.38-1 1.40+0 1.70-1 9.21-1 1.60+0 2.70-1 9.27-1 1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.67-1 1.60+0 2.50-1 8.58-1 1.80+0 3.80-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.10+0 8.27-1 2.80+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 111 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.50+0 1.28-1 1.50+0 1.30+0 1.30+0 1.40+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	1.05+1	2.12+1	7.25-1	1.10+1	2.70+1	8.62-1	1.2	0+1 2.99	9+1 8.46-1	
1.80+0 3.90-1 9.09-1 2.00+0 5.40-1 8.99-1 1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 8.61-1 1.60+0 2.50-1 8.58-1 1.80+0 3.80-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.10+0 8.27-1 2.80+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 111 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.50+0 1.28-1 1.50+0 1.38+0 1.50+0 1.39+0 1.50+0 1.39+0 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0										63
1.00+0 4.60-2 8.53-1 1.20+0 9.00-2 8.44-1 1.40+0 1.60-1 8.67-1 1.60+0 2.50-1 8.58-1 1.80+0 3.80-1 8.85-1 2.00+0 5.30-1 8.82-1 2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.10+0 8.27-1 2.80+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 111 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.49+0 1.70+0 3.91-1 1.35+0 1.50+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0							1.6	0+0 2.79	0-1 9.27-1	
1.60+0 2.50-1 8.58-1	1.80+0	3.90-1	9.09-1	2.00+0	5.40-1	8.99-1				
2.20+0 7.10-1 8.79-1 2.40+0 9.00-1 8.57-1 2.60+0 1.10+0 8.27-1 2.80+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 111 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	1.00+0	4.60-2	8.53-1	1.20+0	9.00-2	8.44-1	1.4	0+0 1.6	0-1 8.67-1	86
2.80+0 1.30+0 7.90-1 3.00+0 1.60+0 8.01-1 3.00+0 1.47+0 7.36-1 94 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 111 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	1.60+0	2.50-1	8.58-1	1.80+0	3.80-1	8.85-1	2.0	0+0 5.30	0-1 8.82-1	
3.00+0 1.47+0 7.36-1 6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 111 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	2.20+0	7.10-1	8.79-1	2.40+0	9.00-1	8.57-1	2.6	0+0 1.1	0+0 8.27-1	
6.00-1 2.27-3 3.63-1 7.00-1 6.14-3 4.90-1 8.00-1 1.57-2 7.10-1 111 9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1	2.80+0	1.30+0	7.90-1	3.00+0	1.60+0	8.01-1				
9.00-1 2.52-2 7.06-1 1.00+0 3.46-2 6.42-1 1.10+0 5.46-2 7.05-1 1.20+0 7.90-2 7.41-1 1.30+0 1.08-1 7.60-1 1.40+0 1.40-1 7.59-1 1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	3.00+0	1.47+0	7.36-1							94
9.00-1 2.52-2 7.06-1	6.00-1	2.27-3	3.63-1	7.00-1	6.14-3	4.90-1	8.0	0-1 1.5	7-2 7.10-1	111
1.20+0 7.90-2 7.41-1				1.00+0	3.46-2	6.42-1	1.1	0+0 5.4	6-2 7.05-1	
1.50+0 1.70-1 7.27-1 1.60+0 2.25-1 7.73-1 1.70+0 2.73-1 7.67-1 1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0										
1.80+0 3.18-1 7.41-1 1.90+0 3.97-1 7.78-1 2.00+0 4.74-1 7.89-1 2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0										
2.10+0 5.25-1 7.50-1 2.20+0 6.33-1 7.84-1 2.30+0 6.62-1 7.16-1 7.00+0 1.32+1 8.98-1 125 49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0				1.90+0	3.97-1	7.78-1	2.0	0+0 4.7	4-1 7.89-1	
49 Indium Fluorescence yield = 0.853 3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0				2.20+0	6.33-1	7.84-1	2.3	0+0 6.6	2-1 7.16-1	
3.00+0 1.51+0 9.16-1 5.00+0 5.20+0 8.53-1 59 9.00-1 3.74-2 1.32+0 1.00+0 6.12-2 1.42+0 1.10+0 9.35-2 1.51+0 80 1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	7.00+0	1.32+1	8.98-1							125
9.00-1 3.74-2 1.32+0	49 I	ndium		Fluoresce	ence yie	ld = 0.8	53			
1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	3.00+0	1.51+0	9.16-1	5.00+0	5.20+0	8.53-1				59
1.20+0 1.28-1 1.50+0 1.30+0 1.70-1 1.49+0 1.40+0 2.30-1 1.55+0 1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0	9.00-1	3.74-2	1.32+0	1.00+0	6.12-2	1.42+0	1.1	0+0 9.3	5-2 1.51+0	80
1.50+0 2.55-1 1.35+0 1.60+0 3.40-1 1.44+0 1.70+0 3.91-1 1.35+0 1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0										
1.80+0 4.08-1 1.17+0 1.90+0 5.10-1 1.23+0 2.00+0 4.34-1 8.87-1 2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0										
2.10+0 6.89-1 1.21+0 2.20+0 7.06-1 1.07+0 2.30+0 9.86-1 1.30+0										
2.40+0 1.31+0 1.52+0 2.50+0 1.49+0 1.53+0					1.49+0	1.53+0				

 $\textbf{TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium}^{a,b} \\ \textbf{—Continued}$

E ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	E ₁	σ ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	Ref.
					-				
		8.37-1		7.30-2				-1 8.74-1	86
		8.49-1		3.10-1				-1 8.78-1	
		8.94-1		7.60-1		2.60	0+0 9.00	-1 8.24-1	
2.80+0	1.10+0	8.12-1	3.00+0	1.30+0	7.89-1				
6.00-1	5.50-3	1.13+0	8.00-1	1.90-2	1.09+0	1.00	0+0 5.00	-2 1.16+0	87
1.20+0	8.50-2	9.93-1	1.40+0	1.50-1	1.01+0	1.60	0+0 2.30	-1 9.76-1	
		1.00+0	2.00+0	5.00-1	1.02+0	2.20	0+0 6.60	-1 1.00+0	
2.40+0	8.50-1	9.87-1							
3.00+0	1.12+0	6.80-1	5.00+0	3.62+0	5.94-1	7.00	n + ∩ 9 2∩	+0 7.34-1	94
	1.62+1			2.30+1		,	0.0 3.20	.0 7.54 1	74
	4 70 0		7 00 4						
	1.73-3			4.25-3				-3 4.86-1	111
		6.63-1		2.64-2				-2 6.30-1	
	5.70-2 1.22-1			7.23-2 1.49-1				-2 6.23-1 -1 6.85-1	
		6.86-1		2.53-1				-1 6.19-1	
	3.71-1		1.5010	2.33 1	0.00-1	2.00	JTU 3.03	-1 0.19-1	
2.10.0	3.71 1	0.43 1							
		4.19-1		1.32-4		4.00	0-1 3.47	-4 6.23-1	129
		7.48-1		3.77-3				-3 8.40-1	
8.00-1	1.50-2	8.58-1	9.00-1	2.48-2	8.75-1	1.00	0+0 3.77	-2 8.76-1	
50 T:	in		Fluoresce	nce yie	ld = 0.8	62			
2 60 1	F 70 F	7 7010	2 20 1	0.70.5	7 0710	2 0		/ 2 22.2	
	5.70-5 5.20-4			9.70-5 7.70-4				-4 2.29+0	6
	2.00-3			2.30-3				-3 2.66+0 -3 1.49+0	
		1.42+0		3.80-2				-2 1.47+0	
						2.0	5.70	2 1.47.0	
1.60+2	9.41+1	1.63+0							30
1.00+0	3.20-2	9.29-1	2.25+0	5.50-1	9.48-1	3.00	n+n 1 3n	+0 9.54-1	47
				2100 1		3.0	1.50	.0 3.54 1	7/
	3.13-1			5.82-1		2.60	0+0 9.19	-1 1.02+0	60
		9.69-1		1.71+0		3.60	0+0 2.25	+0 9.99-1	
4.00+0	3.31+0	1.11+0	4.40+0	4.03+0	1.07+0				
6.00-1	3.20-3	8.50-1	8.00-1	8.20-3	5.92-1	1.00	0+0 3.20	-2 9.29-1	63
		8.41-1			8.30-1			-1 8.36-1	03
1.80+0	2.40-1	8.45-1		3.20-1				2 0.00 1	
3 3370	6 10-1	9.41-1	2 67±0	0 /1-1	9.70-1	2 0	1 20	10 1 0110	
		9.41-1		2.39+0				+0 1.01+0 +0 9.96-1	64
		1.01+0		4.40+0				+0 9.96-1	
		1.01+0		7.03+0		3.00	310 3.23	10 1.0210	
1 0010	0 (0 0	7	4 60:-						
		7.55-1			8.12-1			-1 8.30-1	86
		8.36-1			8.45-1			-1 8.49-1	
		8.31-1 8.05-1			8.20-1 8.08-1			-1 8.12-1	
4.0UTU	5.UU-1	0.05-1	2.90+0	1.00+0	0.00-1	3.00	J+U 1.20	+0 8.81-1	
3.00+0	9.40-1	6.90-1							94
									•

E ₁	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	$\sigma^{\rm Exper}$	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
5.00-1	1.00-3	6.71-1	7.50-1	8.00-3	7.63-1	1.00	+0 2.90	-2 8.42-1	95
		9.12-1	1.50+0	1.50-1	9.78-1	2.00	+0 4.00	-1 9.99-1	
2.50+0	7.60-1	9.50-1							
8.00-1	4.50-3	3.25-1	9.00-1	1.00-2	4.43-1	1.00	+0 1.67	-2 4.85-1	111
		4.65-1		3.55-2		1.30	+0 5.11	-2 5.53-1	
		5.36-1		8.00-2				-2 5.12-1	
		5.15-1		1.60-1		1.90	+0 1.91	-1 5.63-1	
2.00+0	2.18-1	5.45-1	2.10+0	2.68-1	5.74-1				
7.00+0	1.07+1	1.00+0							125
4.20-1	8.60-4	1.55+0	5.10-1	1.80-3	1.09+0	6.00	-1 3.00	-3 7.97-1	135
		7.38-1		7.80-3				-2 7.62-1	
		9.27-1		2.10-2				-2 9.49-1	
		9.33-1		6.80-2				-2 1.00+0 -1 9.72-1	
		1.05+0 8.76-1		1.60-1 2.70-1		1.6	1.90	-1 9.72-1	
1.,1.0	2.10 1	0.70 1	1.01.0	2.,,	7.55 1				
5.00-1	1.36-3	9.12-1	6.00-1	3.59-3	9.53-1	7.00	7.63	-3 9.87-1	144
		1.05+0		2.43-2				-2 1.07+0	
		1.09+0		7.50-2				-1 1.08+0	
		1.10+0 1.09+0) 2.12-1) 5.92-1				-1 1.11+0 -1 1.08+0	
		1.09+0)				+0 1.07+0	
		1.05+0		2.22+0				+0 1.05+0	
4.50+0	4.17+0	1.04+0	5.00+0	5.26+0	1.03+0	5.50	0+0 6.64	+0 1.04+0	
6.00+0	7.93+0	1.02+0							
51 A	ntimony		Fluoresce	ence yie	1d = 0.8	37			
1.00+0	2.60-2	9.41-1	2.25+0	5.40-1	1.13+0	3.0	0+0 1.20	+0 1.06+0	47
6.00-1	1.40-3	4.77-1	8.00-1	1.00-2	9.09-1	1.0	0+0 2.60	-2 9.41-1	63
		9.88-1		1.00-1		1.6	0+0 1.60	0-1 1.03+0	
1.80+0	2.30-1	9.90-1	2.00+0	3.40-1	1.04+0				
3 00-1	1 86-5	4 77-1	3 50-	1 7 25-5	5 77-1	4.0	0-1 2.03	3-4 6.62-1	126
		8.73-1						2-3 9.62-1	
		1.02+0			1.10+0				
			4.00-					3-4 7.83-1	129
			7.00-			8.0	0-1 8.93	3-3 8.12-1	
9.00-1	1.48-2	8.20-1	1.00+0	2.57-2	9.31-1				
2.10+0	3.15-1	8.21-1	2.60+0	0 6.06-1	8.17-1	3.1	0+0 9.55	5-1 7.70-1	148
		8.93-1							
52 T	elluriu	ım	Fluoresco	ence yie	ald = 0.8	377			
6.00-1	2.20-3	9.60-1	8.00-	1 9.00-3	1.03+0	1.0	0+0 1.90)-2 8.55-1	63
			1.40+					0-2 7.22-1	
		6.31-1		1.80-1	6.68-1				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

	σ^{Exper}	$\sigma^{ m Exper}$	$E_{\scriptscriptstyle 1}$	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
•	(barn)	σ ^{ECPSSR}	— (MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	— Ref.
(MeV)	(oarii)		(IVIEV)	(barii)		(IVIEV)	(baili)		Kei.
7.00+	-0 7.06+0	9.05-1							125
1 (0)	0 (1/ 0	/ 00 1	1 001	0 0 0 0	. 7. 1	0.00			100
	-0 6.14-2 -0 1.79-1			·0 8.26-2 ·0 2.42-1			FO 1.25-1 FO 2.82-1		138
	-0 4.17 - 1			0 5.19-1		2,00			
	T - 3!		F1		14 - 0 0	0.1.			
53	Iodine		riuoresc	ence yie	1d = 0.88	04			
	1.50-3			1 6.20-3			+0 1.40 - 2		87
	HO 3.20-2			0 5.90-2			+0 9.20 - 2		
	HO 1.50-1			0 2.10-1	9.45-1	2.20	FO 3.00-	1 9.92-1	
2.401	-0 3.60-1	9.05-1							
3.00+	0 5.50 - 1	7.04-1	5.00+	0 2.36+0	7.64-1	7.00-	+0 5.14 + (7.71-1	94
9.00+	0 8.70+0	7.91-1	1.10+	1 1.18+1	7.57-1				
	1 0 01 0	1 0010		1 (01 0	0 07 1	1 00			
	1 2.01-3			·1 6.01-3 ·0 5.79-2			FO 1.62-2		127
	0 3.32-2						FO 9.60-2		
	+0 1.34-1 +0 3.58-1			-0 1.96-1 -0 4.78-1			FO 2.70-1 FO 5.48-1		
	0 5.30 1 0 6.23-1			-0 7.52 - 1			FO 9.45-		
	0 0.23 1			0 7.32-1			+0 3.43 +0 1.36+0		
3.00.	0 1.11.0	0.47 1	3.00	0 1.52.0	0.00 1	3.03	10 1.501	0.04-1	
1.50+	0 8.07-2	9.69-1	2.00+	0 2.02-1	9.09-1	2.25	HO 2.95-	1 9.08-1	143
2.504	HO 4.56-1	1.01+0	2.75+	0 4.82-1	7.98-1	3.00-	+0 7.88-	1 1.01+0	
54	Xenon		Fluores	ence vie	1d = 0.8	Q 1			
<i>-</i>	Action		Tuoresc	ence yre	- U.U	71			
4.504	+0 4.73 + 0	2.36+0	5.00+	-0 6.64+0	2.54+0				48
55	Cesium		Fluorosa	enco vio	1d = 0.8	0.7			
23	Oestun		riuoresc	ence yre	1u - 0.0	<i>31</i>			
1.134	-0 1.60-2	8.26-1	1.34+	-0 2.80-2	7.52-1	1.55	0 5.00-2	2 7.90-1	87
	-0 7.80 - 2			-0 1.10-1			+0 1.70-		
2.39+	HO 2.10-1	7.73-1	2.60+	-0 2.90-1	8.21-1	2.70-	FO 3.00-	1 7.56-1	
1 504	-n 5 96-2	1 06+0	2.00+	-0 1 66 - 1	1 00+0	2 25.	LO 2 26-	1 1 0140	143
			2.75+				FO 6.06-		143
					2.00.0	0.00		1,11,0	
56	Barium		Fluoresc	ence yie	1d = 0.99	02			
1 604	+2 4.22+1	1 02±0							20
1.00	4.2211	1.02+0							30
1.00+	0 8.40-3	8.70-1	1.204	-0 1.40-2	6.96-1	1.40-	FO 2.00-2	2 5.54-1	63
1.60+	-0 3.00-2	5.12-1	1.80+	-0 4.40-2	4.97-1	2.00-	FO 4.90-2	2 3.87-1	
7 00									
7.00+	0 3.75+0	8.92-1							125
1 50-	Lበ / 45-2	1 00±0	2.00+	.n 1 n7.1	Q /,E_1	2 25		1 1 1010	162
	-0 4.65-2 -0 3.26-1				6.45-1 1.15+0		FU 2.U5 FO 5.71-:	1 1.10+0	143
	r			- ····	1.10.0	3.00	· J J · / L		

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_{i}	σ ^{Exper} —	σ ^{Exper}	<i>E</i> _t	σ ^{Exper}	σ ^{Exper}	E_1	σ ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
.00-1	7.64-4	8.78-1	7.00-1	1.72-3	8.93-1	8.00)-1 3.50-	3 9.62-1	144
.00-1	6.29-3	1.02+0	1.00+0	1.03-2	1.07+0	1.10	+0 1.52-	2 1.07+0	
. 20+0	2.18-2	1.08+0	1.30+0	2.94-2	1.08+0	1.40	0+0 3.93-	2 1.09+0	
.50+0	5.06-2	1.09+0	1.60+0	6.67-2	1.14+0			2 1.13+0	
	9.65-2			1.42-1				1 1.10+0	
	2.57-1			3.27-1				1 1.10+0	
	4.98-1			6.09-1				1 1.11+0	
.00+0	1.16+0	1.11+0	4.50+0	1.53+0	1.07+0			0 1.06+0	
	2.56+0			3.07+0	1.04+0				
7 Lá	nthanur	n	Fluoresce	nce yie	1d = 0.90	07			
	2.70-3			7.40-3				2 8.45-1	63
	2.50-2		1.60+0	3.10-2	6.37-1	1.80)+0 3.90-	2 5.29-1	
.00+0	5.20-2	4.92-1							
	1.21-1			1.96-1		2.50)+0 2.47-	1 1.13+0	143
. 75+0	3.57-1	1.21+0	3.00+0	4.93-1	1.28+0				
8 Ce	erium		Fluoresce	nce yie	1d = 0.9	12			
.00-1	3.20-4	5.89-1	8.00-1	1.70-3	7.12-1	1.00	0+0 5.10-	3 7.86-1	87
. 20+0	1.10-2	8.03-1	1.40+0	2.10-2	8.46-1	1.60	0+0 3.10-	2 7.63-1	
.80+0	5.60-2	9.08-1	2.00+0	7.40-2	8.36-1	2.20	0+0 1.10-	1 9.04-1	
.40+0	1.40-1	8.66-1							
.00+0	2.64+0	8.50-1							125
.00-1	9.57-5	5.26-1	6.00-1	3.43-4	6.31-1	7.00	0-1 8.82-	4 7.11-1	129
.00-1	1.97-3	8.25-1	9.00-1	3.87-3	9.44-1	1.00)+0 5.69-	3 8.77-1	
.00-1	4.38-4	8.06-1	6.50-1	6.89-4	8.18-1	7.00	0-1 1.06-	3 8.55-1	144
	2.23-3			4.01-3				3 1.00+0	
	1.00-2			1.46-2				2 1.08+0	
	2.70-2			3.48-2				2 1.10+0	
	5.62-2			6.87-2				2 1.12+0	
	1.34-1			1.82-1				1 1.12+0	
			3.00+0						
			4.00+0						
.00+0	1.50+0	1.10+0	5.50+0	1.90+0	1.09+0	6.00	0+0 2.34+	0 1.08+0	
9 P1	caseodyr	nium	Fluoresce	nce yie	1d = 0.9	17			
		6.72-1			6.74-1			3 6.92-1	87
			1.40+0	1.60-2	7.72-1	1.60	0+0 2.70-	2 7.94-1	
		7.54-1		5.70-2	7.66-1	2.20	0+0 8.10-	2 7.90-1	
. 40+0	1.00-1	7.33-1							
.00-1	3.80-5	2.70-1	7.50-1	6.20-4	4.37-1	1.00	0+0 3.30-	3 6.17-1	95
. 25+0	9.20-3	6.88-1	1.50+0	1.90-2	7.08-1	2.00	0+0 6.40-	2 8.60-1	
.50+0	1.50-1	9.65-1							
0 Ne	eodymiur	n	Fluoresce	nce yie	1d = 0.93	21			

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	$\sigma^{ m Exper}$	<i>E</i> ₁	σ ^{Exper}	$\sigma^{ m Exper}$	E_{t}	σ ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
6.00-1	1 2.10-4	6.13-1	8.00-1	1.10-3	6.94-1	1.00+0	3.40-3	7.68-1	87
1.20+0	8.10-3	8.55-1	1.40+0	1.60-2	9.22-1	1.60+0	2.60-2	9.11-1	
1.80+0	3.90-2	8.96-1	2.00+0	5.30-2	8.44-1	2.20+0	7.50-2	8.65-1	
2.40+0	9.70-2	8.41-1							
	1 6.83-4			1.50-3			1 2.66-3		144
	4.43-3			6.86-3			1.02-2		
	0 1.41-2			1.91-2			2.49-2		
	0 3.19-2 0 9.95-2) 4.92-2) 1.30-1			7.06-2 7.69-1		
	0 9.93-2			2.63-1			3.23-1		
	0 4.21-1			6.06-1			8.32 - 1		
	0 1.09+0			1.41+0			0 1.73+0		
1.00+0	0 1.86-3	4.20-1	1.20+0	5.61-3	5.92-1	1.40+	1.27-2	7.32-1	154
	0 2.34-2			3.96-2			5.61-2		
2.20+0	0 8.19-2	9.45-1	2.40+0	1.10-1	9.53-1	2.60+	1.42-1	9.51-1	
	0 1.55-1			1.79-1			2.43-1		155
3.20+0	0 3.04-1	1.07+0	3.40+0	3.73-1	1.09+0	3.60+	0 4.23-1	1.05+0	
	0 1.35-1			2.13-1			0 5.02-1		159
	0 7.95-1			1.05+0		5.40+	0 1.26+0	1.03+0	
6.00+	0 1.84+0	1.15+0	6.50+0	2.14+0	1.10+0				
61	Promethi	um	Fluoresco	ence yie	1d = 0.9	25			
7.00+	0 1.74+0	8.65-1							125
62	Samarium		Fluoresco	ence yie	1d = 0.9	29			
1.60+	2 4.55+1	1.54+0							30
			1 001		ć 20 t	1 051			
	1 4.30-4			2.10-3			0 6.30-3		95
1.50+	0 1.40-2	8.//-1	2.00+0	4.30-2	9.54-1	2.50+	0 8.90-2	9.35-1	
7.00-	1 3.97-4	7.52-1	8.00-	1 9.25-4	8.70-1	9.00-	1 1.74-3	9.23-1	144
	0 2.96-3			4.69-3			0 7.06-3		
	0 9.85-3				1.11+0		0 1.77-2		
	0 2.30-2			2.99-2			0 3.57-2		
	0 5.08-2			7.12-2			0 9.57-2		
	0 1.24-1			1.57-1			0 1.95-1		
			3.50+0				0 4.51-1		
	0 6.27-1		5.00+0	8.22-1	1.10+0	5.50+	0 1.05+0	1.10+0	
	0 1.32+0	1.10+0							
6.00+			1 00+	2.22-3	7.28-1	1.20+	0 5.24-3		154
8.00-	1 5.66-4		1.001						
8.00- 1.40+	0 1.05-2	8.57-1	1.60+	1.75-2	8.62-1	1.80+	0 2.88-2		
8.00- 1.40+ 2.00+	0 1.05-2 0 4.36-2	8.57-1 9.67-1	1.60+0 2.20+0	1.75-2	8.62-1 9.82-1	1.80+ 2.40+	0 2.88-2 0 8.37 <mark>-</mark> 2		
8.00- 1.40+ 2.00+	0 1.05-2	8.57-1 9.67-1	1.60+0 2.20+0	1.75-2	8.62-1 9.82-1	1.80+ 2.40+			
8.00- 1.40+ 2.00+ 2.60+	0 1.05-2 0 4.36-2	8.57-1 9.67-1 1.02+0	1.60+0 2.20+0	0 1.75-2 0 6.12-2	8.62-1 9.82-1 1.13+0	2.40+		1.00+0	155
8.00- 1.40+ 2.00+ 2.60+ 2.60+ 3.20+	0 1.05-2 0 4.36-2 0 1.10-1	8.57-1 9.67-1 1.02+0 1.15+0 1.15+0	1.60+(2.20+(2.80+(3.40+(0 1.75-2 0 6.12-2 0 1.54-1	9.82-1	3.00+	0 8.37-2 0 1.82-1	1.00+0	155

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	$\sigma^{ m Exper}$	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
2.70+0	1.14-1	9.35-1	3.00+0	1.71-1	1.01+0	4.00+0	4.25-1	1.06+0	159
4.50+0	5.68-1	1.02+0		7.48-1			1.01+0		137
	1.27+0			1.52+0			1.90+0		
		1.00.0					1.90+0	1.0370	
63 E1	uropium		Fluoresce	nce yie	1d = 0.9	32			
	8.50-4			2.00-3			4.50-3		87
	9.10-3			1.40-2			2.30-2		
2.00+0	3.30-2	8.61-1	2.20+0	4.40-2	8.29-1	2.40+0	5.90-2	8.30-1	
2.20+1	1.26+1	9.87-1	3.10+1	1.65+1	8.83-1	4.40+1	2.00+1	8.15-1	104
64 G	adolini	ım	Fluoresce	nce yie	1d = 0.9	35			
8.00-1	7.10-4	9.89-1	1.00+0	2.20-3	1.04+0	1.20+0	4.90-3	1.04+0	87
1.40+0	8.60-3	9.83-1	1.60+0	1.50-2	1.03+0	1.80+0	2.10-2	9.33-1	
2.00+0	3.30-2	1.01+0	2.20+0	4.40-2	9.70-1	2.40+0	5.60-2	9.22-1	
7.00+0	9.90-1	7.50-1	8.00+0	1.48+0	8.19-1	9.00+0	1.85+0	7.82-1	100
1.00+1	2.48+0	8.37-1	1.10+1	3.06+0	8.47-1	1.20+1	3.75+0	8.75-1	
1.30+1	4.10+0	8.22-1	1.40+1	4.94+0	8.65-1	1.50+1	5.68+0	8.83-1	
4.75+0	2.88-1	5.98-1							107
9.00-1	5.60-4	4.33-1	1.20+0	3.18-3	6.77-1	1.40+0	7.01-3	8.01-1	139
1.60+0	1.31-2	8.97-1	1.80+0	2.05-2	9.11-1	2.00+0	3.15-2	9.64-1	
2.20+0	4.56-2	1.00+0	2.40+0	6.24-2	1.03+0	2.60+0	8.00-2	1.01+0	
65 T	erbium		Fluoresce	nce yie	1d = 0.9	38			
1.60+2	2.94+1	1.18+0							30
8.00-1	1.85-4	3.13-1	1.00+0	9.94-4	5.60-1	1.20+0	3.01-3	7.60-1	155
1.40+0	6.47-3	8.71-1		1.17-2			1.74-2		100
	2.77-2			3.90-2			5.26-2		
2.60+0	7.30-2	1.08+0		9.57-2			1.13-1		
3.20+0	1.43-1	1.09+0	3.40+0	1.60-1	1.01+0	3.60+0	1.96-1	1.05+0	
2.70+0	9.10-2	1.19+0	3.00+0	1.00-1	9.33-1	4.00+0	2.76-1	1.08+0	159
			5.00+0				6.67-1		
6.00+0	1.04+0	1.33+0	6.50+0	1.06+0	1.11+0		1.56+0		
67 He	olmium		Fluoresce	nce yie	1d = 0.9	44			
8.00-1	3.62-4	8.99-1	9.00-1	7.27-4	9.72-1	1.05+0	1.70-3	1.08+0	91
	3.14-3			5.43-3			8.36-3		
1.60+0	1.08-2	1.19+0			1.18+0		2.42-2		
2.10+0	2.79-2	1.14+0		3.35-2			4.32-2		
2.60+0	5.56-2	1.10+0	2.80+0	7.21-2	1.12+0		8.99-2		
3.20+0	1.18-1	1.21+0			1.17+0		1.58-1		
3.80+0	1.85-1	1.12+0	4.00+0	2.06-1	1.07+0				
7.50-1	1.10-4	3.92-1	1.00+0	7.10-4	5.67-1	1.25+0	2.50-3	7.38-1	95
1.50+0	6.00-3	8.46-1	2.00+0	1.90-2	9.19-1	2.50+0	4.20-2	9.48-1	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_{i}	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
7.00	+0 1.00+0	1.14+0							125
9.00	-1 2.08-4	2.78-1	1.00+0	6.08-4	4.85-1	1.20+0	1.74-3	6.11-1	145
1.20-	+0 1.89-3	6.63-1		3.90-3		1.60+0	7.45-3	8.18-1	
1.60	+0 7.92-3	8.70-1	1.80+0	1.30-2	9.20-1	2.00+0	1.97-2	9.53-1	
	+0 2.06-2			2.84-2			3.92-2		
2.40-	+0 3.95-2	1.02+0	2.60+0	5.32-2	1.05+0	2.60+0	4.95-2	9.81-1	
2.70-	+0 6.11-2	1.07+0	3.00+0	8.53-2	1.07+0	4.00+0	2.04-1	1.06+0	159
4.50-	+0 2.84-1	1.05+0	5.00+0	3.87-1	1.07+0	5.50+0	5.14-1	1.09+0	
6.00-	+0 6.47-1	1.09+0	6.50+0	8.96-1	1.23+0	7.00+0	9.87-1	1.12+0	
	+0 1.22+0			1.31+0		8.50+0	1.65+0	1.18+0	
9.00-	+0 1.96+0	1.23+0	9.50+0	2.01+0	1.12+0	1.00+1	2.47+0	1.22+0	
69	Thulium		Fluoresce	ence yie	1d = 0.9	49			
3.00-	+0 5.30-2	8.80-1	5.00+0	2.40-1	8.68-1		,		59
7.00-	+0 7.32-1	1.08+0							125
1.00-	+0 4.63-4	5.20-1	1.20+0	1.46-3	7.07-1	1.40+0	3.11-3	7.84-1	154
	+0 5.64-3			9.57-3				9.09-1	134
	+0 2.27-2			2.85-2				1.21+0	
1.00-	+0 5.97-4	6.71-1	1.20+	1.90-3	9.20-1	1.40+0	4.02-3	1.01+0	155
	+0 7.21-3			1.21-2		2.00+0	1.74-2	1.13+0	
2.20	+0 2.82-2	1.31+0	2.40+	3.56-2	1.23+0			1.22+0	
2.80	+0 5.89-2	1.22+0	3.00+	8.19-2	1.36+0			1.41+0	
3.40	+0 1.31-1	1.47+0	3.60+0	0 1.43-1	1.35+0				
70	Ytterbiu	m	Fluoresco	ence yie	1d = 0.9	51			
4.00	+0 1.19-1	9.37-1	7.50+0	5.64-1	7.99-1	8.00+0	7.10-1	8.58-1	100
9.00	+0 9.06-1	8.27-1	1.00+	1 1.10+0	7.92-1	1.10+1	1.39+0	8.08-1	
1.20	+1 1.74+0	8.44-1	1.30+	1 2.04+0	8.38-1	1.40+1	1 2.35+0	8.36-1	
1.50	+1 2.74+0	8.53-1							
72	Hafnium		Fluoresco	ence yie	1d = 0.9	55			
7.50	-1 5.10-5	4.86-1	1.00+	3.70-4	6.88-1	1.25+0	1.30-3	8.37-1	95
			2.00+						
73	Tantalum	ı	Fluoresc	ence yie	ld = 0.9	57			
1 92.	+0 1 30-2	1.71+0	2.17+	0 2 30-2	1.95+0	2 4በ±ሰ	3.30-2	1.97+0	1
			2.88+					2.68+0	*
1 00	LO 2 10.2	E 101	2 001	n 2 on 2	6 2 1_1	2 2017	n 6 00-9	2 6 96 1	5
1.00	TU 0 VU 3	5 E 2 -1	2.00+0	J J. DU-J	F 70_1	2.2010) 0.UU-3	4.84-1 5 00-1	5
2.3U	+0 0.00 - 3	5.54°1	2.40+0 3.40+0	J 7./U-3 1 2 50-2	J./O"L 6.70-1	2.0U+(3.50±0) 1.1U-2	. J. UU-1	
5.00	. U 2.UU Z	J. QJ-1	J. 40 (1	- 2.JU Z		3.3010		. -1 12 V ~4	
3.70	+0 3.50-2	5.17-1	3.90+	0 4.50-2	5.67-1				

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ₁	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
									No.
1.00+	0 8.70-4	1.91+0	1.12+	0 1.40-3	1.74+0	1.25+	0 2.50-3	1.87+0	6
1.60+	2 2.28+1	1.41+0							30
	1 3.30-5			0 3.10-4			0 1.60-3		95
1.50+	-0 2.80-3	9.60-1		0 8.70-3		2.50+	0 2.00-2	1.04+0	
	-0 3.27-1 -1 8.17-1	_		0 5.00-1 1 9.94-1			0 6.62 - 1		100
	1.53+0			1 1.63+0			1 1.87+0		
7.00+	0 4.57-1	1.12+0							125
	0 4.40-4			0 1.01-3			0 2.24-3		158
	0 4.28-3			0 6.84-3			0 1.08-2		
	0 1.40-2			0 1.98-2			0 2.54-2		
	-0 3.47-2 -0 6.52 - 2			0 4.14-2 0 7.50-2			0 5.13-2		
3.401	0 6.32-2	1.25+0	3.00	0 7.30-2	1.20+0	3.607	0 8.50-2	1.10+0	
	0 2.80-2			0 3.92-2			0 5.24-2		159
	0 7.11-2			0 9.76-2			0 1.38-1		
	0 1.96-1			0 2.72-1			0 3.18-1		
	0 3.81-1			0 4.93-1		7.50+	-0 5.98-1	1.23+0	
8.00+	+0 6.43 - 1	1.13+0	8.50+	0 8.13-1	1.23+0				
74	Tungsten		Fluoresc	ence yie	1d = 0.9	58			
4.75+	·0 1.05 - 1	8.41-1							107
1.20+	0 5.84-4	6.13-1	1.39+	0 1.64-3	8.92-1	1.60+	-0 2.68-3	8.15-1	139
	HO 6.60 - 3			0 1.10-2			-0 1.59-2		
	0 1.91-2			0 2.44-2			-0 3.89-2		
	0 6.59-2			0 1.08-1			0 1.62-1		
6.00+	HO 2.14-1	8.95-1	6.90+	0 3.03-1	8.75-1	8.004	-0 4.32-1	8.56-1	
6.50-	-1 9.01-6	3.54-1	7.20-	1 2.51-5	4.68-1	8.00-	1 6.10-5	5.68-1	142
	-1 1.44-4			0 2.79-4		1.25+	-0 8.99 - 4	7.82-1	
	HO 2.01-3			0 3.80-3	8.13-1	2.004	0 6.57-3	8.52-1	
	HO 1.02-2				9.23-1		0 2.25-2		
	0 3.18-2			0 4.27-2	2 1.07+0	3.504	-0 5.29-2	2 1.05+0	
3.75+	+0 7.35 - 2	1.18+0							
75	Rhenium		Fluoresc	ence yie	e1d = 0.9	59			
	-1 2.20 - 5 -0 2.10-3				4.88-1		+0 7.40-4 +0 9.60-3		95
	Platinum				a1d = 0.9		- 5.00 -		
				J. J. L.	0.7				00
1.604	F2 1.82+1	1.48+0							30

Table 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1 $\sigma^{\rm E}$	xper	σ^{Exper}	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	$\sigma^{ m Exper}$	σ^{Exper}	
(MeV) (ba	arn)	σ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
7.50-1 1 1.50+0 1				0 1.30-4 0 4.00-3	6.46-1 8.67-1		0 5.10-4 0 9.20-3		95
7.00+0	2.72-1	1.22+0							125
79 Go:	ld		Fluoresco	ence yie	1d = 0.96	54			
2.40+0	1.60-2	2.03+0							1
1.60+2	1.68+1	1.44+0							30
3.00+0 2 7.00+0 2 1.00+1 1 1.30+1	2.40-1 5.80-1	1.20+0 1.19+0	8.00+0 1.10+	0 4.20-2 0 2.60-1 1 6.50-1 1 1.20+0	9.24-1 1.07+0	9.00+ 1.20+	0 1.30-1 0 4.50-1 1 8.20-1 1 1.40+0	1.19+0 1.11+0	41
1.00+0 9 1.30+0 4 1.60+0 1 1.90+0 3 2.20+0 9 2.80+0 1 3.40+0 4	4.96-4 1.41-3 3.16-3 5.75-3 1.47-2 2.96-2	7.40-1 8.36-1 9.43-1 9.93-1 1.10+0 1.18+0	1.40+0 1.70+0 2.00+0 2.40+0 3.00+0	0 1.88-4 0 7.61-4 0 1.96-3 0 4.04-3 0 8.33-3 0 1.89-2 0 3.70-2	8.06-1 9.06-1 9.91-1 1.06+0 1.13+0	1.50+ 1.80+ 2.10+ 2.60+ 3.20+	0 3.07-4 0 1.03-3 0 2.50-3 0 4.95-3 0 1.12-2 0 2.36-2 0 4.35-2	8.04-1 9.21-1 1.01+0 1.08+0 1.15+0	91
1.00+0 9 1.75+0 9 2.50+0 9 3.00+0 9 5.00+0 9	1.80-3 7.50-3 1.90-2 7.00-2	7.41-1 8.25-1 1.13+0 8.83-1	2.00+ 2.75+ 3.50+	0 3.80-4 0 3.00-3 0 1.00-2 0 2.50-2 0 1.10-1	7.36-1 7.96-1 9.13-1	2.25+ 2.80+ 4.00+	0 9.00-4 0 5.50-3 0 1.30-2 0 4.00-2 0 1.80-1	8.77-1 9.75-1 9.70-1	93
7.50-1 1.50+0				9.40-5 3.20 - 3			0 3.90-4 0 7.50-3		95
7.50+0 2 1.00+1 4 1.30+1 8	4.12-1	8.46-1	1.10+	0 2.46-1 1 5.50-1 1 9.41-1	9.04-1	1.20+	0 3.23-1 1 6.75-1 1 1.16+0	9.13-1	100
2.20+1 2	2.66+0	1.08+0	3.10+	1 3.88+0	9.31-1	4.40+	1 5.93+0	9.31-1	104
7.00+0 2	2.12-1	1.06+0							125
7.10-1 4 9.00-1 3 1.50+0 3 2.25+0 6 3.50+0 2	3.89-5 1.05-3 6.30-3	4.29-1 8.20-1 1.00+0	1.00+0 1.75+0	1 8.77-6 0 8.94-5 0 2.21-3 0 9.24-3	9.10-1	1.25+ 2.00+	1 1.75-5 0 3.86-4 0 3.95-3 0 1.60-2	6.95-1 9.69-1	142
1.60+0 1 2.40+0 7				3.74-3 3 1.12-2	9.18-1 1.08+0		0 5.49 - 3 0 1.36-2		145

 σ^{Exper}

 σ^{Exper}

 E_1

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

 σ^{Exper}

 $\sigma^{
m Exper}$

 E_1

 σ^{Exper}

 σ^{Exper}

82 Lead Fluorescence yield = 0.967 1.92+0 3.60-3 1.49+0 2.17+0 5.90-3 1.53+0 2.40+0 1.05-2 1.89+0 1 1.60+0 1.10-3 9.58-1 1.70+0 1.50-3 1.01+0 1.80+0 2.00-3 1.07+0 5.00-3 1.09+0 2.20-3 9.46-1 2.00+0 4.78-9 1 2.00+0 4.75-3 9.52-1 2.10+0 3.60-3 1.05+0 2.20+0 4.30-3 1.06+0 2.30+0 4.50-3 9.43-1 2.40+0 5.10-3 9.18-1 2.50+0 7.90-3 1.23+0 2.60+0 8.80+0 3.10+0 2.00-3 1.08+0 2.70+0 9.90-3 1.18+0 2.90+0 1.10-2 1.04+0 3.00+0 1.30-2 1.09+0 3.20+0 1.40-2 9.55-1 3.20+0 1.50-2 1.02+0 3.30+0 1.50-2 1.09+0 3.20+0 1.40-2 9.55-1 3.20+0 1.50-2 1.02+0 3.30+0 1.60-2 9.90-1 3.40+0 1.70-2 9.57-1 3.60+0 1.80-2 8.47-1 1.60+2 1.84+1 1.87+0 30 3.00+0 1.28-2 1.08+0 5.00+0 5.30-2 9.37-1 59 7.50-1 2.60-6 1.90-1 1.00+0 6.10-5 5.83-1 1.25+0 2.40-4 6.62-1 95 7.50-1 2.60-6 4.76-3 1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 4.00+0 4.07-2 1.39+0 7.50+0 1.57-1 9.18-1 8.00+0 1.86-1 9.22-1 1.00+0 9.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+0 6.00+0 9.87-3 8.31-1 6.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.78-1 1.20+1 1.30+1 1.25+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.78-1 1.25+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.10+1 2.95-1 8.05-1 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.89-1 1.25+0 2.40+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.10+1 2.02-1 1.03+0 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4 7.63-1 9.5 1.25+0 2.40-4	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
1.92+0 3.60-3 1.49+0 2.17+0 5.90-3 1.53+0 2.40+0 1.05-2 1.89+0 1 2.88+0 3.05-2 2.94+0 1.05-3 1.01+0 1.80+0 2.00-3 1.07+0 1.90+0 2.20-3 9.46-1 2.00+0 2.70-3 9.52-1 2.10+0 3.60-3 1.05+0 2.20+0 4.30-3 1.06+0 2.30+0 4.50-3 9.43-1 2.40+0 5.10-3 9.18-1 2.50+0 7.90-3 1.23+0 2.60+0 8.40-3 1.14+0 2.70+0 9.00-3 1.08+0 2.70+0 9.90-3 1.18+0 2.90+0 1.10-2 1.02+0 3.30+0 1.30-2 1.09+0 3.20+0 1.40-2 9.55-1 3.20+0 1.50-2 1.02+0 3.30+0 1.30-2 9.90-1 3.40+0 1.70-2 9.57-1 3.60+0 1.80-2 8.47-1 1.60+2 1.84+1 1.87+0 3.00+0 1.28-2 1.08+0 5.00+0 5.30-2 9.37-1 59 7.50-1 2.60-6 1.90-1 1.00+0 6.10-5 5.83-1 1.25+0 2.40-4 6.62-1 9.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 4.00+0 4.07-2 1.39+0 7.50+0 1.57-1 9.18-1 8.00+0 1.86-1 9.22-1 9.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+0 8.00-1 9.16-1 1.00+0 2.45-3 8.63-1 2.25+0 3.69-3 8.37-1 1.50+0 8.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.70+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.17+0 1.25+0 1.25+0 2.40-4 7.63-1 9.50+0 1.25+0 1.25+0 2.45-3 8.63-1 2.50+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.28-1 9.17-1 7.00+0 1.50-1 1.17+0 125 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 9.5 1.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 100 1.00+1 1.61-1 1.03+0 1.00+1 2.09-1 8.85-1 1.00+0 1.20+1 2.38-1 9.91-1 1.30+1 2.99-1 8.65-1 1.50+1 3.72-1 9.37-1 1.20+0 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.00+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.00+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.00+0 2.10-3 8.98-1 2.80+0 3.00-3 8.87-1 2.81+0 3.64-3 8.86-1 3.00+0 3.00+0 7.69-2 1.14+0 107	82	Lead		Fluoresc	ence vie	1d = 0.9	67			
2.88+0 3.05-2 2.94+0 1.60+0 1.10-3 9.58-1					-					
1.60+0 1.10-3 9.58-1 1.70+0 1.50-3 1.01+0 1.80+0 2.00-3 1.07+0 1.90+0 2.20-3 9.46-1 2.00+0 2.70-3 9.52-1 2.10+0 3.60-3 1.05+0 2.20+0 4.30-3 1.06+0 2.30+0 4.50-3 9.43-1 2.40+0 5.10-3 9.18-1 2.50+0 7.90-3 1.23+0 2.50+0 8.40-3 1.14+0 2.70+0 9.00-3 1.08+0 2.70+0 9.90-3 1.18+0 2.90+0 1.10-2 1.04+0 3.00+0 1.30-2 1.09+0 3.20+0 1.40-2 9.55-1 3.20+0 1.50-2 1.02+0 3.30+0 1.60-2 9.90-1 3.40+0 1.70-2 9.57-1 3.60+0 1.80-2 8.47-1 3.00+0 1.28-2 1.08+0 5.00+0 5.30-2 9.37-1 59 7.50-1 2.60-6 1.90-1 1.00+0 6.10-5 5.83-1 1.25+0 2.40-4 6.62-1 1.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 95 7.50-1 2.60-6 4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 95 4.00+0 4.07-2 1.39+0 7.50+0 1.57-1 9.18-1 8.00+0 1.86-1 9.22-1 90.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.00+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 1.50+1 8.00-1 9.16-1 1.00+0 2.45-3 8.63-1 2.25+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.20-1 1.30+1 1.30+1 5.60-2 8.99-1 7.00+0 1.85-1 9.17-1 7.00+0 1.50-1 1.17+0 1.50-1 1.00+0 1.00-1 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 1.20-1 1.00+0 1.00-1 1.50-1 1.17+0 1.20-1 1.00+0 1.00-1 1.50-1 1.17+0 1.00+0 1.50-1 1.17+0 1.00+0 1.50-1 1.17+0 1.00+0 1.50-1 1.70+0 1.00+1 1.50-1 1.70+0 1.00+1 1.50-1 1.70+0 1.00+1 1.50-1 1.70+0 1.00+1 1.50-1 1.70+0 1.00+1 1.50-1 1.70+0 1.00+1 1.50-1 1.70+0 1.00+1 1.50-1 1.70+0 1.00+1 1.50-1 1.70+0 1.00+1 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.70+0 1.00+1 1.50-1 1.70+0 1.00+1 1.50+0 1				2.17+	0 5.90-3	1.53+0	2.40+0	1.05-2	2 1.89+0	1
1.90+0 2.20-3 9.46-1 2.00+0 2.70-3 9.52-1 2.40+0 3.60-3 1.05+0 2.20+0 4.30-3 1.06+0 2.30+0 4.50-3 9.43-1 2.40+0 5.10-3 9.18-1 2.50+0 7.90-3 1.23+0 2.60+0 8.40-3 1.14+0 3.00+0 1.30-2 1.09+0 3.20+0 1.40-2 9.55-1 3.20+0 1.80-2 8.47-1 3.60+0 1.80-2 8.47-1 3.60+0 1.80-2 8.47-1 3.60+0 1.80-2 8.47-1 3.60+0 1.80-2 9.90-1 3.30+0 1.60-2 9.90-1 3.40+0 1.70-2 9.57-1 3.60+0 1.80-2 8.47-1 3.00+0 1.28-2 1.08+0 5.00+0 5.30-2 9.37-1 59 7.50-1 2.60-6 1.90-1 1.00+0 6.10-5 5.83-1 2.50+0 5.10-3 7.95-1 4.00+0 4.07-2 1.39+0 7.50-0 1.28-2 1.09+0 2.30-3 8.11-1 2.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 4.00+1 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 7.00+0 1.90-3 7.53-1 7.00+0 1.50-1 1.17+0 125 7.00+0 1.50-1 1.17+0 125 7.00+0 1.50-1 1.17+0 125 7.00+0 1.50-1 1.17+0 12.00+1 1.00+0 1.00+1 1.61-1 1.03+0 1.10+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 1.50+1 3.00+0 9.70-2 1.14+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 8.00+0 1.00+1 1.19+0 1.20-1 1.50+1 3.72-1 9.37-1 1.50+1 3.72-1 9.37-1 1.50+1 3.72-1 9.37-1 1.50+1 3.00+0 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 1.50+1 3.00+0 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 1.50+1 3.00+0 3.00-2 1.14+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.12+0 6.80+0 5.75-2 9.88-1 7.00+0 7.03-3 8.98-1 7.00+0 7.03-3 8.87-1 7.00+0 7.03-3 8.87-1 7.00+0 7.03-3 8.88-1 7.00+0 7.03-3 8.87-1 7.00+0 7.03-3	2.001	0 3.03-2	2.7470							
2.20+0 4.30-3 1.06+0 2.30+0 4.50-3 9.43-1 2.40+0 5.10-3 9.18-1 2.50+0 7.90-3 1.23+0 2.60+0 8.40-3 1.14+0 3.00+0 9.00-3 1.08+0 3.00+0 1.40-2 9.55-1 3.20+0 1.50-2 1.02+0 3.30+0 1.60-2 9.90-1 3.40+0 1.70-2 9.57-1 3.60+0 1.80-2 8.47-1										5
2.50+0 7.90-3 1.23+0 2.90+0 1.10-2 1.04+0 3.00+0 1.30-2 1.08+0 2.70+0 9.90-3 1.18+0 2.90+0 1.10-2 1.02+0 3.00+0 1.30-2 1.09+0 3.20+0 1.40-2 9.55-1 3.20+0 1.50-2 1.02+0 3.30+0 1.60-2 9.90-1 3.40+0 1.70-2 9.57-1 3.60+0 1.80-2 8.47-1 3.30+0 1.60-2 9.90-1 3.30+0 1.60-2 9.90-1 3.40+0 1.70-2 9.57-1 3.60+0 1.80-2 8.47-1 3.30+0 1.60-2 9.90-1 3.30+0 1.60-2 9.90-1 3.00+0 1.28-2 1.08+0 5.00+0 5.30-2 9.37-1 59 7 7.50-1 2.60-6 1.90-1 1.00+0 6.10-5 5.83-1 1.25+0 2.40-4 6.62-1 9.50-1 1.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 4.00+0 4.07-2 1.39+0 7.50+0 1.57-1 9.18-1 8.00+0 1.86-1 9.22-1 100 9.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 1.50+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.25+0 2.40-4 7.63-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 83 Bismuth Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 1.20+1 2.38-1 9.91-1 1.50+1 3.00+0 7.02-2 1.12+0 8.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.00+0 7.02-2 1.14+0 6.80+0 5.75-2 9.88-1 7.00+0 7.09-2 1.14+0 1.00+1 1.50+1 1.07+1 1.95-1 1.22+0 1.00+0 8.88-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.24-0 2.00+0 8.88-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0										
2.70+0 9.90-3 1.18+0 2.90+0 1.10-2 1.04+0 3.00+0 1.30-2 1.09+0 3.20+0 1.40-2 9.55-1 3.20+0 1.50-2 1.02+0 3.30+0 1.60-2 9.90-1 3.60+0 1.70-2 9.57-1 3.60+0 1.80-2 8.47-1 1.60+2 1.84+1 1.87+0 30 3.00+0 1.28-2 1.08+0 5.00+0 5.30-2 9.37-1 59 7.50-1 2.60-6 1.90-1 1.00+0 6.10-5 5.83-1 1.25+0 2.40-4 6.62-1 95 1.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 4.00+0 4.07-2 1.39+0 7.50+0 1.57-1 9.18-1 8.00+0 1.86-1 9.22-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.50+1 8.00-1 9.16-1 1.00+0 4.18-5 4.00-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 1.50+1 8.00-1 9.16-1 1.00+0 4.18-5 4.00-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 1.75+0 1.22-3 7.29-1 2.00+0 2.45-3 8.63-1 2.25+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 125 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 95 1.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 1.20-1 7.00+0 1.50-1 1.17+0 1.20-1 7.00+0 1.50-1 1.17+0 1.20-1 7.00+0 1.50-1 1.17+0 1.20-1 7.00+0 1.50-1 1.17+0 1.20-1 7.00+0 1.50-1 1.17+0 1.20-1 1.00+0 1.20-1 1.30+0 1.20-1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 1.00+1 1.50-1 9.43-1 1.00+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.40+0 2.00+0 3.60-3 8.87-1 2.80+0 3.60-3 8.87-1 2										
3.20+0 1.40-2 9.55-1 3.60+0 1.80-2 1.02+0 3.30+0 1.60-2 9.90-1 3.40+0 1.70-2 9.57-1 3.60+0 1.80-2 8.47-1 3.60+2 1.84+1 1.87+0 30 3.00+0 1.28-2 1.08+0 5.00+0 5.30-2 9.37-1 59 7.50-1 2.60-6 1.90-1 1.00+0 6.10-5 5.83-1 1.25+0 2.40-4 6.62-1 95 1.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 4.00+0 4.07-2 1.39+0 7.50+0 1.57-1 9.18-1 8.00+0 1.86-1 9.22-1 9.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.25+0 2.44-4 6.73-1 2.25+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.78-1 1.25+0 1.25										
1.60+2 1.84+1 1.87+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-2 1.08+0 3.00+0 1.28-1 1.00+1										
3.00+0 1.28-2 1.08+0 5.00+0 5.30-2 9.37-1 59 7.50-1 2.60-6 1.90-1 1.00+0 6.10-5 5.83-1 1.25+0 2.40-4 6.62-1 2.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 4.00+0 4.07-2 1.39+0 7.50+0 1.57-1 9.18-1 8.00+0 1.86-1 9.22-1 100 9.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.00+0 4.18-5 4.00-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 113 1.75+0 1.22-3 7.29-1 2.00+0 2.45-3 8.63-1 2.25+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 1.20-1 7.00+0 1.78-1 1.25+0 1.20-1 7.00+0 1.78-1 1.25+0 1.20-1 7.00+0 1.50-1 1.17+0 1.25-0 7.00+0 1.50-1 1.17+0 1.25-0 7.00+0 1.50-1 1.17+0 1.25-0 7.00+0 1.50-1 1.17+0 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 1.50+1 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.10-3 8.88-1 7.20+0 2.10-3 8.98-1 2.00+0 8.18-4 7.14-1 2.30+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0 1.05+0 1.05+0 1.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.05+0 1.50-1 3.05+0 1.05+0 1.05+0 1.05+0 1.50-1 3.05+0 1.05	3.40+	0 1.70-2	9.57-1	3.60+	0 1.80-2	8.47-1				
7.50-1 2.60-6 1.90-1 1.00+0 6.10-5 5.83-1 1.25+0 2.40-4 6.62-1 95 1.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 95 1.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 100 9.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 1.3 1.75+0 1.22-3 7.29-1 2.00+0 2.45-3 8.63-1 2.25+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 1.50+0 6.00-4 7.89-1 2.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 1.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 1.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 1.50+0 6.00-4 7.89-1 2.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.50+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 1.50+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 1.50+0 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.50+0 3.00-3 8.86-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0 1.50+0 1.50+0 1.50+0 1.50+0 1.50+0 1.50+0 1.50+0 1.50+0 1.50+0 1.50-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0 1.50+0 1.	1.60+	2 1.84+1	1.87+0							30
1.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 4.00+0 4.07-2 1.39+0 7.50+0 1.57-1 9.18-1 8.00+0 1.86-1 9.22-1 100 9.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.00+0 4.18-5 4.00-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 2.50+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 125 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 2.50+0 4.90-3 8.55-1 7.00+0 7.02-2 1.12+0 8.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.40+0 2.10-3 8.86+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.24-0 1.02+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	3.00+	0 1.28-2	1.08+0	5.00+	0 5.30-2	9.37-1				59
1.50+0 6.60-4 7.63-1 2.00+0 2.30-3 8.11-1 2.50+0 5.10-3 7.95-1 4.00+0 4.07-2 1.39+0 7.50+0 1.57-1 9.18-1 8.00+0 1.86-1 9.22-1 100 9.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.00+0 4.18-5 4.00-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 2.50+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 125 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 2.50+0 4.90-3 8.55-1 7.00+0 7.02-2 1.12+0 8.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.40+0 2.10-3 8.86+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.24-0 1.02+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	7.50-	1 2.60-6	1.90-1	1.00+	0 6.10-5	5 5 . 83 - 1	1.25+0	2.40-4	4 6.62-1	95
9.00+0 2.41-1 8.87-1 1.00+1 2.98-1 8.49-1 1.10+1 3.99-1 9.07-1 1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.00+0 4.18-5 4.00-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 1.75+0 1.22-3 7.29-1 2.00+0 2.45-3 8.63-1 2.25+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 125 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.24-1 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0										22
1.20+1 4.78-1 8.90-1 1.30+1 5.68-1 8.86-1 1.40+1 6.75-1 8.97-1 1.50+1 8.00-1 9.16-1 1.00+0 4.18-5 4.00-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 1.75+0 1.22-3 7.29-1 2.00+0 2.45-3 8.63-1 2.25+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 125 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 1.50+1 3.72-1 9.37-1 1.20+0 2.00-5 2.21-1 1.00+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.24-1 2.30+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	4.00+	0 4.07-2	1.39+0	7.50+	0 1.57-1	9.18-1	8.00+0	1.86-	1 9.22-1	100
1.50+1 8.00-1 9.16-1 1.00+0 4.18-5 4.00-1	9.00+	0 2.41-1	8.87-1	1.00+	1 2.98-1	8.49-1	1.10+	1 3.99-	1 9.07-1	
1.00+0 4.18-5 4.00-1 1.25+0 2.44-4 6.73-1 1.50+0 6.38-4 7.38-1 1.75+0 1.22-3 7.29-1 2.00+0 2.45-3 8.63-1 2.25+0 3.69-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 125 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 9.5 1.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 1.07 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0				1.30+	1 5.68-1	8.86-1	1.40+	1 6.75-	1 8.97-1	
1.75+0 1.22-3 7.29-1 2.00+0 2.45-3 8.63-1 2.25+0 3.66-3 8.37-1 3.00+0 9.87-3 8.31-1 4.00+0 2.61-2 8.89-1 5.00+0 5.37-2 9.49-1 6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 125 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 2.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 1.07 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 1.24-0 1.20+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	1.50+	1 8.00-1	9.16-1							
3.00+0 9.87-3 8.31-1	1.00+	0 4.18-5	4.00-1	1.25+	0 2.44-4	6.73-1	1.50+0	6.38-	4 7.38-1	113
6.00+0 9.13-2 9.69-1 7.00+0 1.35-1 9.45-1 8.00+0 1.85-1 9.17-1 7.00+0 1.78-1 1.25+0 125 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 95 1.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0										
7.00+0 1.78-1 1.25+0 83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 95 1.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0										
83 Bismuth Fluorescence yield = 0.968 7.50-1 1.80-6 1.63-1	6.00+	0 9.13-2	9.69-1	7.00+	0 1.35-1	9.45-1	8.00+	0 1.85-	1 9.17-1	
7.50-1 1.80-6 1.63-1 1.00+0 5.40-5 6.09-1 1.25+0 2.40-4 7.63-1 2.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 100 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	7.00+	0 1.78-1	1.25+0							125
1.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 100 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	83	Bismuth		Fluoresc	ence yie	eld = 0.9	68			
1.50+0 6.00-4 7.89-1 2.00+0 1.90-3 7.53-1 2.50+0 4.90-3 8.55-1 7.00+0 1.50-1 1.17+0 125 90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 100 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	7.50-	1 1.80-6	1.63-1	1.00+	0 5.40-5	6.09-1	1.25+	2.40-	4 7.63-1	95
90 Thorium Fluorescence yield = 0.971 7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 100 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	1.50+	0 6.00-4	7.89-1							
7.00+0 7.02-2 1.12+0 8.00+0 1.06-1 1.19+0 9.00+0 1.28-1 1.07+0 1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	7.00+	0 1.50-1	1.17+0							125
1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.83+0 4.45-4 5.65-1 124 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	90	Thorium		Fluoresc	ence yie	ald = 0.9	71			
1.00+1 1.61-1 1.03+0 1.10+1 2.02-1 1.03+0 1.20+1 2.38-1 9.91-1 1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.83+0 4.45-4 5.65-1 124 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	7 004	∩ 7 ∩2≖2	1 12±0	8 00+	0 1 06-1	1 10+0	a 00±	n 1 28-	1 1 0740	100
1.30+1 2.75-1 9.53-1 1.40+1 2.95-1 8.65-1 1.50+1 3.72-1 9.37-1 4.75+0 3.02-2 1.41+0 6.80+0 5.75-2 9.88-1 7.20+0 7.69-2 1.14+0 107 8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.83+0 4.45-4 5.65-1 124 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0										100
8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0										
8.80+0 1.07-1 9.43-1 1.01+1 1.95-1 1.22+0 1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	,	0 0 00 0	4 /4.5				7 00:	0 7 40	0 1 1/10	107
1.20+0 2.00-5 2.21-1 1.60+0 2.21-4 5.17-1 1.83+0 4.45-4 5.65-1 124 2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0							7.20+	U /.69-	2 1.14+0	107
2.00+0 8.18-4 7.14-1 2.30+0 1.52-3 7.63-1 2.40+0 2.10-3 8.98-1 2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	0.8U+	U 1.U/-1	9.43-1	1.01+	1 1.92-1	1.22+0				
2.80+0 3.60-3 8.87-1 2.81+0 3.64-3 8.86-1 3.30+0 7.38-3 1.05+0	1.20+	0 2.00-5	2.21-1	1.60+	0 2.21-4	5.17-1	1.83+	0 4.45-	4 5.65-1	124
3./9+U 1.1/-Z 1.0/+U 4.80+U 2.7Z-Z 1.23+U 6.00+U 4.91-Z 1.18+U										
	3./9 1	U 1.17-2	1.0/+0	4.80+	U 2.72-2	2 1.23+0	6.00+	U 4.91-	2 1.18+0	

 $\textbf{TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium}^{a,b} \\ \textbf{—Continued}$

E_1	σ^{Exper}	$\sigma^{ m Exper}$	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.

92	Uranium		Fluorescence yield = 0.972	
2.25·	+0 1.50-3	1.01+0	3.75+0 9.20-3 1.05+0	2
2.50·	+0 5.80-4	2.61-1	2.70+0 8.40-4 2.86-1 2.90+0 1.00-3 2.65-1	5
3.10	+0 1.20-3	2.54-1	3.30+0 1.50-3 2.58-1 3.60+0 2.00-3 2.60-1	
			4.20+0 3.50-3 2.83-1 4.40+0 4.80-3 3.38-1	
4.60	+0 5.80-3	3.58-1	5.00+0 7.30-3 3.54-1 5.60+0 9.50-3 3.34-1	
1.60	+2 1.00+1	1.75+0		30
1.40	+0 1.05-4	6.29-1	1.50+0 1.53-4 6.34-1 1.60+0 2.42-4 7.23-1	91
1.80	+0 4.92-4	8.43-1	2.00+0 9.05-4 9.81-1 2.20+0 1.41-3 1.04+0	
2.40	+0 2.04-3	1.07+0	2.60+0 2.82-3 1.10+0 2.80+0 4.28-3 1.28+0	
3.00	+0 5.29-3	1.25+0	3.20+0 6.70-3 1.28+0 3.40+0 7.93-3 1.24+0	
3.60	+0 8.50-3	1.11+0	3.80+0 1.13-2 1.24+0 4.00+0 1.41-2 1.32+0	
1.25	+0 3.60-5	4.17-1	1.50+0 1.30-4 5.38-1 2.00+0 5.90-4 6.40-1	95
2.50	+0 2.10-3	9.46-1		
4.75	+0 1.46-2	8.21-1		107
1.10	+0 1.67-5	4.46-1	1.20+0 3.12-5 4.67-1 1.30+0 5.35-5 4.89-1	142
1.40	+0 8.59-5	5.15-1	1.60+0 1.93-4 5.76-1 1.80+0 3.80-4 6.51-1	
2.00	+0 6.81-4	7.38-1	2.25+0 1.29-3 8.68-1 2.50+0 2.23-3 1.00+0	

a Cross sections and their ratios are printed in a compressed power of 10 -1 notation, e.g. 4.76-1 means 4.76*10 .

The ratios shown in **bold** print differ by more than a factor of 2 from the averaged ratios and were -- as described in the text -- rejected.

This rejection criterion was applied only to the Z2 > 9 data.

 σ^{Exper}

 σ^{Exper}

 E_1

Table 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}

 E_1

27			_,			-			
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
4	Berylliu	m	Fluoresce	nce vie	1d = 0.0	0033			
•	DOLYTILE		114010500	,					
3.00	-2 5.66+0	2.91-1	4.00-2	2.29+1	3.46-1	5.00-	2 6.46+1	4.21-1	119
6.00	-2 1.35+2	4.82-1	8.00-2	3.39+2	5.52-1	1.00-	1 5.90+2	5.97-1	
1.20	-1 8.95+2	6.66-1							
				_					
11	Sodium		Fluoresce	nce yie	1d = 0.0	123			
<i>(</i> , 00	-2 1.80-2	1 6110	E 00-2	E 00-3	1.47+0	6 FO-	2 2.00-1	1 7510	102
4.00	-2 1.60-2	1.01+0	3.00-2	3.00-2	1.47+0	0.30-	2 2.00-1	1.75+0	102
13	Aluminum		Fluoresce	nce vie	1d = 0.0	39			
				,					
1.80	-1 1.18+0	7.46-1	2.00-1	1.68+0	7.16-1	2.80-	1 5.06+0	6.53-1	25
3.60	-1 1.12+1	6.33-1							
	-2 1.68-3				1.07+0		2 5.71-3		45
	-2 1.44-2				1.01+0		2 5.46-2		
	-2 9.00-2				9.35-1		1 2.02-1		
	-1 2.80-1				8.59-1		1 4.98-1		
	-1 8.05-1					2.00-			
	-1 2.54+0		2.40-1	3.50+0	7.72-1	2.60-	1 4.79+0	7.98-1	
2.80	-1 6.42+0	8.29-1							
2 00	+0 5.04+2	7 56-1	3 00+0	7 59+2	8.11-1	4 nn+	0 8.89+2	8 22-1	97
	+0 9.46+2				8.25-1		0 9.51+2		· · ·
	+1 9.07+2				2 7.81-1		1 8.08+2		
	+1 7.75+2				7.67-1		1 6.83+2		
1.50	11 7.7512	, ,,,,, ,	1.00.1	. /.00.2	. ,, 1	1.75.	1 0.05.1	. , , ,	
2.40	-2 7.00-6	1.84-1	2.80-2	2.50-5	1.87-1	3.00-	2 7.00-5	3.12-1	102
	-2 1.30-4				5.57-1		2 7.00-4		
	-2 1.40-3			3.50-3	6.42-1	5.50-	2 7.00-3	3 7.73-1	
6.00	-2 1.20-2	8.55-1					•		
14	Silcon		Fluoresce	ence yie	e1d = 0.0	05			
									100
5.00	-2 1.20-3	5.29-1	6.00-2	4.60-3	3 7.35-1				102
15	Dhoanhor		Fluoresce	nco Hi	14 = 0 (163			
13	Phosphor	.uS	T THOT 62Cf	arce Ale	51a - 0.1	, o o			
1.60	+0 2.32+2	8.46-1	1.80+0	2.83+2	2 8.54-1	2.00+	-0 3.22+2	2 8.33-1	122
	+0 3.68+2				8.76-1		-0 4.77+2		
	+0 5.20+2				2 8.78-1		0 6.13+2		
	+0 6.31+2				2 9.22-1		-0 6.77+2		
	+0 7.04+2						• • • •		

 σ^{Exper}

 σ^{Exper}

 σ^{Exper}

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold**.—Continued

E_{i}	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.

16 Sulfur	Fluorescence yield = 0.078	
1.60+0 1.64+2 8.19-1 2.20+0 2.84+2 8.37-1 2.80+0 4.04+2 8.69-1 3.40+0 5.10+2 8.92-1 4.00+0 5.59+2 8.47-1	2.40+0 3.25+2 8.49-1 2.60+0 3.59+2 8.45-1 3.00+0 4.29+2 8.53-1 3.20+0 4.62+2 8.58-1 3.60+0 5.34+2 8.85-1 3.80+0 5.55+2 8.78-1	2
17 Chlorine	Fluorescence yield = 0.097	
1.60+0 1.19+2 7.95-1 2.20+0 2.18+2 8.21-1 2.80+0 2.99+2 7.92-1 3.40+0 3.96+2 8.30-1 4.00+0 4.57+2 8.13-1	2.40+0 2.28+2 7.51-1 2.60+0 2.72+2 7.97-1 3.00+0 3.31+2 8.03-1 3.20+0 3.41+2 7.66-1 3.60+0 4.34+2 8.56-1 3.80+0 4.39+2 8.19-1	2
19 Potassium	Fluorescence yield = 0.14	
1.60+0 6.13+1 7.69-1 2.20+0 1.23+2 7.96-1 2.80+0 1.80+2 7.66-1 3.40+0 2.47+2 7.88-1 4.00+0 3.01+2 7.80-1	2.40+0 1.32+2 7.29-1 2.60+0 1.62+2 7.78-1 3.00+0 2.04+2 7.79-1 3.20+0 2.13+2 7.40-1 3.60+0 2.74+2 8.10-1 3.80+0 2.82+2 7.78-1	.2
20 Calcium	Fluorescence yield = 0.163	
4.00-1 6.93-1 8.76-1 7.00-1 4.73+0 8.56-1		3
21 Scandium	Fluorescence yield = 0.188	
4.00-1 4.73-1 9.24-1 1.00+0 1.04+1 9.07-1 1.60+0 3.74+1 8.97-1	1.20+0 1.78+1 9.15-1 1.40+0 2.62+1 8.84-1	:1
4.00-1 4.45-1 8.69-1 7.00-1 3.25+0 8.74-1		3
22 Titanium	Fluorescence yield = 0.214	
1.80-1 1.26-2 1.12+0 3.00-1 1.29-1 1.19+0		:5
6.00+0 3.70+2 1.07+0	1.25+1 6.80+2 1.15+0 1.50+1 7.80+2 1.25+0 3	1
1.00+0 7.68+0 9.55-1 3.00+0 1.25+2 1.00+0		1
4.00-1 2.98-1 8.81-1 7.00-1 2.19+0 8.61-1	· · · · · · · · · · · · · · · · · · ·	3
2.00-1 2.42-2 1.31+0 3.50-1 2.52-1 1.26+0		3

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}—Continued

MeV (bam)	E_1	$\sigma^{ m Exper}$	σ^{Exper}	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	<i>E</i> ₁	σ^{Exper}	$\sigma^{ m Exper}$	
6.50-1 2.46+0 1.24+0 8.00-1 3.16+0 1.24+0 7.50-1 3.98+0 1.24+0 8.00-1 4.91+0 1.24+0 8.50-1 5.95+0 1.23+0 9.00-1 7.11+0 1.23+0 1.00+0 9.80+0 1.22+0 1.10+0 1.30+1 1.21+0 1.20+0 1.67+1 1.21+0 1.30+0 2.09+1 1.20+0 1.40+0 2.56+1 1.20+0 2.00+0 6.42+1 1.21+0 1.50+0 3.08+1 1.19+0 2.00+0 6.42+1 1.21+0 2.00+0 6.42+1 1.20+0 2.50+0 6.91+1 1.03+0 2.00+0 2.50+0 6.91+1 1.03+0 2.00+1 2.00+0 9.22-1 2.00+0 9.52-1 2.00+0 9.52-1 2.00+0 9.56-1 2.00+0 9.	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
6.50-1 2.46+0 1.24+0 8.00-1 3.16+0 1.24+0 7.50-1 3.98+0 1.24+0 8.00-1 4.91+0 1.24+0 8.50-1 5.95+0 1.23+0 9.00-1 7.11+0 1.23+0 1.00+0 9.80+0 1.22+0 1.10+0 1.30+1 1.21+0 1.20+0 1.67+1 1.21+0 1.30+0 2.09+1 1.20+0 1.40+0 2.56+1 1.20+0 2.00+0 6.42+1 1.21+0 1.50+0 3.08+1 1.19+0 2.00+0 6.42+1 1.21+0 2.00+0 6.42+1 1.20+0 2.50+0 6.91+1 1.03+0 2.00+0 2.50+0 6.91+1 1.03+0 2.00+1 2.00+0 9.22-1 2.00+0 9.52-1 2.00+0 9.52-1 2.00+0 9.56-1 2.00+0 9.	5 00-1	0 63-1	1 2/40	5 50-1	1 3610	1 2/4-0	6 00-1	1 8610	1 2/40	
8.00-1 4.91+0 1.24+0 8.50-1 5.95+0 1.23+0 9.00-1 7.11+0 1.23+0 1.00+0 9.80+0 1.22+0 1.10+0 1.30+1 1.21+0 1.50+0 3.08+1 1.19+0 1.80+0 4.94+1 1.20+0 2.00+0 6.42+1 1.21+0 1.80+0 3.65+1 1.20+0 1.80+0 4.94+1 1.20+0 2.00+0 6.42+1 1.21+0 1.80+0 3.65+1 1.20+0 1.80+0 4.94+1 1.20+0 2.00+0 6.42+1 1.21+0 1.80+0 3.65+1 1.20+0 1.80+0 4.94+1 1.20+0 2.00+0 6.42+1 1.21+0 1.80+0 3.08+1 1.19+0 1.80+0 3.08+1 1.19+0 1.80+0 4.94+1 1.20+0 2.00+0 6.42+1 1.21+0 1.80+0 3.08+1 1.19+0 1.80+0 3.08+1 1.19+0 1.80+0 3.08+1 1.19+0 1.80+0 3.08+1 1.19+0 1.80+0 3.08+1 1.19+0 1.80+0 3.08+1 1.19+0 1.80+0 3.08+1 1.19+0 1.80+0 3.08+1 1.80+0 3.80+1 3.80+1 3.										
1.00+0 9.80+0 1.22+0 1.30+0 2.09+1 1.20+0 1.40+0 2.56+1 1.20+0 1.60+0 3.65+1 1.20+0 1.80+0 4.94+1 1.20+0 2.00+0 6.42+1 1.21+0 2.00+0 6.42+1 1.21+0 2.00+0 6.42+1 1.21+0 2.00+0 6.42+1 1.21+0 2.00+0 6.42+1 1.21+0 2.00+0 6.42+1 1.21+0 2.00+0 6.42+1 1.21+0 2.00+0 5.44+0 9.52-1 3.00+0 1.01+2 1.03+0 2.00+0 4.07+1 1.02+0 2.50+0 6.91+1 1.03+0 2.50+0 6.91+1 1.03+0 3.00+0 1.01+2 1.03+0 4.00-1 2.23-1 9.85-1 3.00+0 1.01+2 1.03+0 4.00-1 2.23-1 9.85-1 5.00-1 5.16-1 9.73-1 6.00-1 9.97-1 9.69-1 7.00-1 1.74+0 9.85-1 8.00-1 2.73+0 9.83-1 9.00-1 3.77+0 9.22-1 24 Chromium Fluorescence yield = 0.275 4.00-1 1.53-1 9.92-1 7.00-1 1.53-1 9.92-1 8.00-1 3.54-1 9.69-1 8.00-1 1.84+0 9.35-1 9.00-1 2.63+0 9.01-1 25 Manganese Fluorescence yield = 0.308 4.00-1 1.05-1 9.96-1 7.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 26 Iron Fluorescence yield = 0.34 4.00-1 8.86-2 1.22+0 8.00-1 1.14+0 1.14+0 1.00+0 2.38+0 1.11+0 1.20+0 4.14+0 1.07+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 4.00-1 7.49-2 1.04+0 5.00-1 1.87-1 1.06+0 6.00-1 3.80-1 1.08+0 7.00-1 6.53-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.88-1 2.50-1 1.19-2 1.31+0 4.00-1 9.27-2 1.28+0 4.50-1 1.49-1 1.23+0 6.00-1 1.49-1 1.23+0 7.00-1 7.66-1 1.23+0 7.00-1 7.66-1 1.23+0 7.00-1 7.66-1 1.23+0 7.00-1 7.66-1 1.23+0 7.00-1 7.66-1 1.23+0 7.00-1 7.66-1 1.23+0 7.00-1 7.60-1 1.80+0 1.20+0 2.50+0 2.34+1 9.85-1 3.00+0 3.71+1 1.00+0 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133										
1.30+0 2.09+1 1.20+0 1.80+0 4.94+1 1.20+0 2.00+0 6.42+1 1.19+0 1.60+0 3.65+1 1.20+0 1.80+0 4.94+1 1.20+0 2.00+0 6.42+1 1.21+0 23 Vanadium Fluorescence yield = 0.243 1.00+0 5.44+0 9.52-1 2.00+0 4.07+1 1.02+0 2.50+0 6.91+1 1.03+0 3.00+0 1.01+2 1.03+0 2.00+0 4.07+1 1.02+0 2.50+0 6.91+1 1.03+0 3.00+0 1.01+2 1.03+0 3.00+0 1.01+2 1.03+0 3.00+0 1.01+2 1.03+0 3.00+0 1.01+2 1.03+0 3.00+0 1.07+0 9.85-1 5.00-1 5.16-1 9.73-1 6.00-1 9.97-1 9.69-1 9.00-1 3.77+0 9.22-1 24 Chromium Fluorescence yield = 0.275 4.00-1 1.53-1 9.92-1 5.00-1 3.54-1 9.69-1 9.00-1 2.63+0 9.01-1 3.34 9.00-1 1.20+0 9.66-1 8.00-1 1.84+0 9.35-1 9.00-1 2.63+0 9.01-1 3.34 9.00-1 1.20+0 9.66-1 8.00-1 1.34+0 9.35-1 9.00-1 2.00+0 9.56-1 9.00-1 2.00+0 9.56-1 9.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 9										
1.00+0 5.44+0 9.52-1 2.00+0 4.07+1 1.02+0 2.50+0 6.91+1 1.03+0 131	1.30+0	2.09+1	1.20+0							
1.00+0 5.44+0 9.52-1 2.00+0 4.07+1 1.02+0 2.50+0 6.91+1 1.03+0 1.01+2 1.03+0 1.01+2 1.03+0 2.00+0 1.01+2 1.03+0 2.00+0 4.07+1 1.02+0 2.50+0 6.91+1 1.03+0 1.01+2 1.03+0 2.00+0 4.07+1 1.02+0 2.50+0 6.91+1 1.03+0 1.03+0 2.00+0 4.00-1 2.23-1 9.85-1 8.00-1 2.73+0 9.83-1 9.00-1 3.77+0 9.22-1 1.00-1 1.74+0 9.85-1 8.00-1 2.73+0 9.83-1 9.00-1 3.77+0 9.22-1 1.00-1 1.53-1 9.92-1 5.00-1 3.54-1 9.69-1 6.00-1 6.79-1 9.47-1 9.00-1 1.20+0 9.66-1 8.00-1 1.84+0 9.35-1 9.00-1 2.63+0 9.01-1 1.00-1 1.20+0 9.66-1 8.00-1 1.84+0 9.35-1 9.00-1 2.63+0 9.01-1 1.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 1.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 1.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 1.00-1 8.86-2 1.22+0 5.00-1 2.03+1 1.15+0 6.00-1 3.97-1 1.12+0 8.00-1 1.14+0 1.14+0 1.00+0 2.38+0 1.11+0 1.20+0 4.14+0 1.07+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 1.00-1 6.53-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 1.00-1 6.53-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 1.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.22+0 8.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.00+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.00+0 1.49+1 1.15+0 1.50+0 8.81+0 1.15+0 1.50+0 8.81+0 1.15+0 1.50+0 1.49+1 1.15+0 1.50+0 8.81+0 1.15+0 1.50+0 1.	1.60+0	3.65+1	1.20+0	1.80+0	4.94+1	1.20+0	2.00+0	6.42+1	1.21+0	
3.00+0 1.01+2 1.03+0 4.00-1 2.23-1 9.85-1 5.00-1 5.16-1 9.73-1 6.00-1 9.97-1 9.69-1 7.00-1 1.74+0 9.85-1 8.00-1 2.73+0 9.83-1 9.00-1 3.77+0 9.22-1 24 Chromium Fluorescence yield = 0.275 4.00-1 1.53-1 9.92-1 5.00-1 3.54-1 9.69-1 9.00-1 2.63+0 9.01-1 9.00-1 1.20+0 9.66-1 8.00-1 1.84+0 9.35-1 9.00-1 2.63+0 9.01-1 9.00-1 1.20+0 9.66-1 8.00-1 1.84+0 9.35-1 9.00-1 2.63+0 9.01-1 9.00-1 1.05-1 9.96-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 9.00-1 1.50+0 9.00-1 1.50	23 V	anadium	٠	Fluoresce	nce yie	1d = 0.243				
4.00-1 2.23-1 9.85-1 5.00-1 5.16-1 9.73-1 6.00-1 9.97-1 9.69-1 133 7.00-1 1.74+0 9.85-1 8.00-1 2.73+0 9.83-1 9.00-1 3.77+0 9.22-1 24 Chromium Fluorescence yield = 0.275 4.00-1 1.53-1 9.92-1 5.00-1 3.54-1 9.69-1 9.00-1 2.63+0 9.01-1 33 7.00-1 1.20+0 9.66-1 8.00-1 1.84+0 9.35-1 9.00-1 2.63+0 9.01-1 33 7.00-1 1.05-1 9.96-1 5.00-1 2.49-1 9.82-1 9.00-1 2.63+0 9.01-1 33 7.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 33 7.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 33 7.00-1 8.86-2 1.22+0 5.00-1 2.03-1 1.15+0 6.00-1 3.97-1 1.12+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 4.00-1 8.53-1 1.05+0 8.00-1 1.10+0 1.01+0 9.00-1 1.50+0 9.98-1 33 7.00-1 6.53-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 2.50-1 1.19-2 1.31+0 4.00-1 9.27-2 1.284-0 4.50-1 1.47-1 1.26+0 5.00-1 2.21-1 1.25+0 6.50-1 3.14-1 1.23+0 6.00-1 4.83-2 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.24+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 7.50-1 9.77-1 1.23+0 7.50-1 9.77-1 7.23+0 7.50-1 9.77-1 7.23+0 7.50-1 9.77-1 7.23+0 7.				2.00+0	4.07+1	1.02+0	2.50+0	6.91+1	1.03+0	131
7.00-1 1.74+0 9.85-1 8.00-1 2.73+0 9.83-1 9.00-1 3.77+0 9.22-1 24 Chromium Fluorescence yield = 0.275 4.00-1 1.53-1 9.92-1 5.00-1 3.54-1 9.69-1 6.00-1 6.79-1 9.47-1 7.00-1 1.20+0 9.66-1 8.00-1 1.84+0 9.35-1 9.00-1 2.63+0 9.01-1 25 Manganese Fluorescence yield = 0.308 4.00-1 1.05-1 9.96-1 5.00-1 2.49-1 9.82-1 6.00-1 4.91-1 9.76-1 9.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 26 Iron Fluorescence yield = 0.34 4.00-1 8.86-2 1.22+0 5.00-1 2.03-1 1.15+0 6.00-1 3.97-1 1.12+0 1.20+0 4.14+0 1.07+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 4.00-1 7.49-2 1.04+0 5.00-1 1.87-1 1.06+0 6.00-1 3.80-1 1.08+0 1.33+1 1.02+0 4.00-1 7.49-2 1.04+0 5.00-1 1.87-1 1.06+0 6.00-1 3.80-1 1.08+0 1.33+1 7.00+0 6.53-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 2.50-1 1.19-2 1.31+0 3.00-1 2.83-2 1.34+0 3.50-1 5.42-2 1.31+0 1.50+0 9.98-1 1.00+0 1.50+0 9.82-0 6.00-1 4.39-1 1.24+0 6.50-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.00+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.00+0 2.55+0 1.19+0 1.00+0 1.52+0 9.74-1 2.00+0 2.00+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.00+0 1.00+0 1.52+0 9.74-1 2.00+0 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 31 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	3.00+0	1.01+2	1.03+0				•			
### Chromium Fluorescence yield = 0.275 ###################################										133
4.00-1 1.53-1 9.92-1 5.00-1 3.54-1 9.69-1 9.00-1 2.63+0 9.01-1 25 Manganese Fluorescence yield = 0.308 4.00-1 1.05-1 9.96-1 5.00-1 2.49-1 9.82-1 6.00-1 4.91-1 9.76-1 133 7.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 26 Iron Fluorescence yield = 0.34 4.00-1 8.86-2 1.22+0 5.00-1 2.03-1 1.15+0 6.00-1 3.97-1 1.12+0 1.20+0 4.14+0 1.07+0 1.00+0 2.38+0 1.11+0 1.20+0 4.14+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 1.00+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 1.00-1 6.53-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 1.50+0 9.98-1 1.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 4.50-1 1.47-1 1.26+0 5.00-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.50+0 9.00-1 1.50+0 9.00-1 1.50+0 9.00-1 1.50+0 9.00-1 1.50+0 9.00-1 1.50+0 9.00-1 1.50+0 9.00-1 1.50+0 9.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 1.20+0 1.00+0 2.55+0 1.19+0 1.00+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.40+0 7.19+0 1.50+0 8.10-1 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.40+0 7.19+0 1.50+0 8.10-1 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.40+0 7.19+0 1.50+0 8.10-1 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.40+0 7.19+0 1.50+0 8.10-1 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.40+0 7.19+0 1.50+0 8.10-1 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.40+0 7.19+0 1.50+0 8.10-1 1.5	7.00-1	1.74+0	9.85-1	8.00-1	2.73+0	9.83-1	9.00-1	3.77+0	9.22-1	
7.00-1 1.20+0 9.66-1 8.00-1 1.84+0 9.35-1 9.00-1 2.63+0 9.01-1 25 Manganese Fluorescence yield = 0.308 4.00-1 1.05-1 9.96-1 5.00-1 2.49-1 9.82-1 6.00-1 4.91-1 9.76-1 7.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 26 Iron Fluorescence yield = 0.34 4.00-1 8.86-2 1.22+0 5.00-1 2.03-1 1.15+0 6.00-1 3.97-1 1.12+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 1.40+0 6.67+0 1.07+0 8.00-1 1.01+0 1.00+0 9.00-1 1.50+0 9.88-1 1.08+0 1.33+1 1.02+0 1.00-1 7.49-2 1.04+0 8.00-1 1.01+0 1.00+0 9.00-1 1.50+0 9.88-1 1.08+0 1.33+1 1.02+0 1.00-1 9.27-2 1.28+0 4.50-1 1.47-1 1.26+0 5.00-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.00+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.06+0 1.06+1 1.14+0 1.00+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 1.60+0 1.06+1 1.14+0 1.00+0 1.06+1 1.14+0 1.00+0 1.00+0 1.52+0 9.74-1 2.00+0 2.00+1 1.15+0 1.60+0 1.06+1 1.14+0 1.00+0 1.00+0 3.71+1 1	24 0	Chromium		Fluoresce	nce yie	1d = 0.275				
## Pluorescence yield = 0.308 ## Oo-1 1.05-1 9.96-1	4.00-1	1.53-1	9.92-1	5.00-1	3.54-1	9.69-1	6.00-1	6.79-1	9.47-1	133
4.00-1 1.05-1 9.96-1 5.00-1 2.49-1 9.82-1 6.00-1 4.91-1 9.76-1 9.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 26 Iron Fluorescence yield = 0.34 4.00-1 8.86-2 1.22+0 5.00-1 2.03-1 1.15+0 6.00-1 3.97-1 1.12+0 1.40+0 1.14+0 1.14+0 1.00+0 2.38+0 1.11+0 1.20+0 4.14+0 1.07+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 4.00-1 7.49-2 1.04+0 5.00-1 1.87-1 1.06+0 6.00-1 3.80-1 1.08+0 1.33+ 1.00+0 1.50+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 2.50-1 1.19-2 1.31+0 3.00-1 2.83-2 1.34+0 3.50-1 5.42-2 1.31+0 153 4.00-1 9.27-2 1.28+0 4.50-1 1.47-1 1.26+0 5.00-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 1.22+0 1.22+0 1.22+0 1.22+0 1.22+0 1.22+0 1.22+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 3.71+1 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0	7.00-1	1.20+0	9.66-1	8.00-1	1.84+0	9.35-1	9.00-1	2.63+0	9.01-1	
7.00-1 8.61-1 9.80-1 8.00-1 1.34+0 9.56-1 9.00-1 2.00+0 9.56-1 26 Iron Fluorescence yield = 0.34 4.00-1 8.86-2 1.22+0 5.00-1 2.03-1 1.15+0 6.00-1 3.97-1 1.12+0 121 8.00-1 1.14+0 1.14+0 1.00+0 2.38+0 1.11+0 1.20+0 4.14+0 1.07+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 4.00-1 7.49-2 1.04+0 5.00-1 1.87-1 1.06+0 6.00-1 3.80-1 1.08+0 9.80-1 1.00+0 9.00-1 1.50+0 9.98-1 2.50-1 1.19-2 1.31+0 3.00-1 2.83-2 1.34+0 3.50-1 5.42-2 1.31+0 9.80-1 1.25+0 5.00-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.50-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 1.60+0 1.06+1 1.14+0 1.30+0 3.71+1 1.00+0 3.71+1 1.00+0 4.52-1 9.83-1 6.00-1 2.48-1 9.88-1 133 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	25 M	langanes	9	Fluoresce	nce yie	1d = 0.308	;			
## Fluorescence yield = 0.34 4.00-1	4.00-1	1.05-1	9.96-1	5.00-1	2.49-1	9.82-1	6.00-1	4.91-1	9.76-1	133
4.00-1 8.86-2 1.22+0 5.00-1 2.03-1 1.15+0 6.00-1 3.97-1 1.12+0 1.00+0 1.14+0 1.14+0 1.00+0 2.38+0 1.11+0 1.20+0 4.14+0 1.07+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 1.40+0 6.53-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 1.50+0 9.98-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 1.50+0 9.98-1 1.00+0 1.9.27-2 1.28+0 4.50-1 1.47-1 1.26+0 5.00-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 3.71+1 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 1.52-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	7.00-1	8.61-1	9.80-1	8.00-1	1.34+0	9.56-1	9.00-1	2.00+0	9.56-1	
8.00-1 1.14+0 1.14+0 1.00+0 2.38+0 1.11+0 1.20+0 4.14+0 1.07+0 1.40+0 6.67+0 1.07+0 1.60+0 9.85+0 1.06+0 1.80+0 1.33+1 1.02+0 4.00-1 7.49-2 1.04+0 5.00-1 1.87-1 1.06+0 6.00-1 3.80-1 1.08+0 9.98-1 2.50-1 1.19-2 1.31+0 3.00-1 2.83-2 1.34+0 3.50-1 5.42-2 1.31+0 1.53 4.00-1 9.27-2 1.28+0 4.50-1 1.47-1 1.26+0 5.00-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	26]	ron		Fluoresce	nce yie	1d = 0.34				
1.40+0 6.67+0 1.07+0	4.00-1	8.86-2	1.22+0	5.00-1	2.03-1	1.15+0	6.00-1	3.97-1	1.12+0	121
4.00-1 7.49-2 1.04+0 5.00-1 1.87-1 1.06+0 6.00-1 3.80-1 1.08+0 7.00-1 6.53-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 2.50-1 1.19-2 1.31+0 3.00-1 2.83-2 1.34+0 3.50-1 5.42-2 1.31+0 153 4.00-1 9.27-2 1.28+0 4.50-1 1.47-1 1.26+0 5.00-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 27 Cobalt Fluorescence yield = 0.373 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133										
7.00-1 6.53-1 1.05+0 8.00-1 1.01+0 1.01+0 9.00-1 1.50+0 9.98-1 2.50-1 1.19-2 1.31+0 3.00-1 2.83-2 1.34+0 3.50-1 5.42-2 1.31+0 4.00-1 9.27-2 1.28+0 4.50-1 1.47-1 1.26+0 5.00-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 27 Cobalt Fluorescence yield = 0.373 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	1.40+0	6.67+0	1.07+0	1.60+0	9.85+0	1.06+0	1.80+0	1.33+1	1.02+0	
2.50-1 1.19-2 1.31+0 3.00-1 2.83-2 1.34+0 3.50-1 5.42-2 1.31+0 4.00-1 9.27-2 1.28+0 4.50-1 1.47-1 1.26+0 5.00-1 2.21-1 1.25+0 5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 27 Cobalt Fluorescence yield = 0.373 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0	4.00-1	7.49-2	1.04+0	5.00-1	1.87-1	1.06+0	6.00-1	3.80-1	1.08+0	133
4.00-1 9.27-2 1.28+0	7.00-1	6.53-1	1.05+0	8.00-1	1.01+0	1.01+0	9.00-1	1.50+0	9.98-1	
5.50-1 3.14-1 1.23+0 6.00-1 4.39-1 1.24+0 6.50-1 5.88-1 1.24+0 7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 27 Cobalt Fluorescence yield = 0.373 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	2.50-1	1.19-2	1.31+0	3.00-1	2.83-2	1.34+0	3.50-1	5.42-2	1.31+0	153
7.00-1 7.66-1 1.23+0 7.50-1 9.77-1 1.23+0 8.00-1 1.22+0 1.22+0 8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 27 Cobalt Fluorescence yield = 0.373 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	4.00-1	9.27-2	1.28+0	4.50-1	1.47-1	1.26+0	5.00-1	2.21-1	1.25+0	
8.50-1 1.50+0 1.21+0 9.00-1 1.81+0 1.20+0 1.00+0 2.55+0 1.19+0 1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 27 Cobalt Fluorescence yield = 0.373 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	5.50-1	3.14-1	1.23+0	6.00-1	4.39-1	1.24+0	6.50-1	5.88-1	1.24+0	
1.10+0 3.46+0 1.18+0 1.20+0 4.52+0 1.17+0 1.30+0 5.77+0 1.16+0 1.40+0 7.19+0 1.15+0 1.50+0 8.81+0 1.15+0 1.60+0 1.06+1 1.14+0 1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 27 Cobalt Fluorescence yield = 0.373 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	7.00-1	7.66-1	1.23+0	7.50-1	9.77-1	1.23+0	8.00-1	1.22+0	1.22+0	
1.40+0 7.19+0 1.15+0	8.50-1	1.50+0	1.21+0	9.00-1	1.81+0	1.20+0	1.00+0	2.55+0	1.19+0	
1.80+0 1.49+1 1.15+0 2.00+0 2.00+1 1.15+0 27 Cobalt Fluorescence yield = 0.373 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133					4.52+0	1.17+0				
27 Cobalt Fluorescence yield = 0.373 1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	1.40+0	7.19+0	1.15+0	1.50+0	8.81+0	1.15+0	1.60+0	1.06+1	1.14+0	
1.00+0 1.52+0 9.74-1 2.00+0 1.34+1 1.02+0 2.50+0 2.34+1 9.85-1 131 3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	1.80+0	1.49+1	1.15+0	2.00+0	2.00+1	1.15+0				
3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	27 (Cobalt		Fluoresce	nce yie	1d = 0.373	3			
3.00+0 3.71+1 1.00+0 4.00-1 4.83-2 9.63-1 5.00-1 1.22-1 9.83-1 6.00-1 2.48-1 9.88-1 133	1.00+0	1.52+0	9.74-1	2.00+0	1.34+1	1.02+0	2.50+0	2.34+1	9.85-1	131
	4.00-1	L 4.83-2	9.63-1	5.00-1	1.22-1	9.83-1	6.00-1	2.48-1	9.88-1	133

 σ^{Exper}

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}—Continued

 E_1

 σ^{Exper}

(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
28 N	ickel		Fluoresce	nce vie	ld = 0.406	,			
				-					
	8.37+0			2.55+1			4.91+1		97
	7.70+1 2.16+2			1.07+2 2.58+2			1.64+2 2.96+2		
	3.08+2			3.37+2			3.53+2		
1.30-1	J.0072	3.13-1	1.0011	3.3172	0.97-1	1.3341	3.3374	9.03-1	
1.00-1	4.20-6	4.77-1	1.10-1	8.70-6	4.23-1	1.20-1	1.90-5	4.52-1	120
1.30-1	4.30-5	5.55-1	1.40-1	7.50-5	5.67-1	1.50-1	1.30-4	6.13-1	
1.60-1	2.00-4	6.18-1	1.80-1	4.40-4	6.58-1	2.00-1	9.30-4	7.57-1	
	1.60-3			2.60-3		2.60-1	4.00-3	8.18-1	
2.80-1	6.10-3	8.76-1	3.00-1	8.30-3	8.60-1				
1.60+0	5.13+0	9.86-1	1.80+0	6.77+0	9.17-1	2.00+0	9.65+0	9.65-1	122
	1.26+1			1.59+1			1.94+1		
2.80+0	2.38+1	9.76-1	3.00+0	2.78+1	9.62-1	3.20+0	3.19+1	9.46-1	
3.40+0	3.64+1	9.39-1	3.60+0	4.19+1	9.48-1	3.80+0	4.80+1	9.68-1	
4.00+0	5.26+1	9.50-1							
4 00-1	3.27-2	9 40-1	5 00-1	8.32-2	9 52-1	6 00-1	1.74-1	0 75-1	133
	3.16-1			5.22-1			7.99-1		133
,,,,,,		J. 05 I	0.00 1	3.22 1	1,00.0	J.00 I	,,,,, 1	1.01.0	
29 0	opper		Fluoresce	nce yie	1d = 0.44				
6.00-1	8.59-2	6.68-1	7.00-1	1.70-1	7.33-1	8.00-1	3.46-1	9 09-1	4
	4.73-1			7.06-1		0.00 1	0.40 1	J. 05 I	₹
1.60+0	3.63+0	9.25-1	1.80+0	5.42+0	9.66-1	2.00+0	7.69+0	1.01+0	122
	9.39+0			1.18+1		2.60+0	1.44+1	9.13-1	
	1.79+1			2.07+1			2.43+1		
	2.86+1		3.60+0	3.30+1	9.42-1	3.80+0	3.69+1	9.31-1	
4.00+0	3.98+1	8.97-1							
1.60-1	6.90-5	3.50-1	1.80-1	2.25-4	5.35-1	2.00-1	6.09-4	7.70-1	126
2.40-1	2.03-3	9.36-1	2.80-1	4.59-3	9.63-1		9.18-3		
3.60-1	1.63-2	1.06+0	4.00-1	2.58-2	1.06+0	5.00-1	6.59-2	1.06+0	
6.00-1	1.45-1	1.13+0							
1 0010	7 70 1	0 00 1	0 0010	7 (010	1 0110	0 5010		1 0110	101
	7.73-1 2.33+1			7.69+0	1.01+0	2.50+0	1.44+1	1.01+0	131
3.00+0	2,3371	1.05+0							
4.00-1	2,40-2	9.82-1	5.00-1	6.33-2	1.02+0	6.00-1	1.26-1	9.79-1	133
	2.33-1				1.01+0		5.80-1		100
						_			
31 6	allium		Fluoresce	nce yie	1d = 0.507	7			
1.60+0	2.14+0	9.59-1	1.80+0	3.10+0	9.60-1	2,00+0	4.16+0	9.36-1	122
	5.46+0			7.15+0			9.00+0		.
	1.11+1				9.37-1		1.58+1		
	1.78+1				9.50-1		2.27+1		
	2.66+1								

 E_1 σ^{Exper} σ^{Exper} E_1

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}—Continued

						_			
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
32 G	ermaniun	1	Fluoresce	nce yie	ld = 0.53	35			
	3.16-1 1.08+1		2.00+0	3.45+0	1.02+0	2.50+0	6.78+0	1.04+0	131
57 R	ubidium		Fluoresce	nce yie	1d = 0.66	57			
	1.89-2			5.13-2	6.50-1	1.20+0	1.06-1	6.83-1	111
	1.92-1			3.27-1	7.65-1	1.80+0	4.61-1	7.25-1	
	7.15-1		2.20+0	8.88-1	7.28-1	2.40+0	1.27+0	7.92-1	
2.60+0	1.62+0	7.90-1							
88 S	trontiu	n	Fluoresce	nce yie	1d = 0.69)			
	1.04-2			1.91-2				7.97-1	111
	1.00-1			1.93-1			3.00-1		
	4.38-1			6.23-1		2.20+0	7.95-1	8.37-1	
2.40+0	1.11+0	8.87-1	2.60+0	1.55+0	9.66-1				
60 Z	irconiu	n	Fluoresce	nce yie	1d = 0.73	3			
7.00-1	4.96-3	6.09-1	8.00-1	9.64-3	6.74-1	1.00+0	2.63-2	7.53-1	111
	5.07-2				8.22-1			8.05-1	
	2.34-1			3.60-1	8.49-1	2.40+0	5.91-1	7.69-1	
2.60+0	6.81-1	6.88-1							
41 N	liobium		Fluoresce	nce yie	1d = 0.74	4			
3.20-1	5.09-5	4.92-1	4.00-1	4.63-4	1.17+0	4.80-1	1.35-3	1.28+0	126
5.60-1	3.02-3	1.35+0	6.40-1	5.60-3	1.35+0	7.20-1	1.03-2	1.48+0	
3.00-1	1.52-2	1.40+0	9.00-1	2.35-2	1.33+0				
47 S	ilver		Fluoresce	nce yie	1d = 0.83	31			
5.00-1	1.06-4	4.74-1	6.00-1	4.23-4	7.09-1	7.00-1	1.07-3	8.44-1	121
	2.02-3			5.83-3		1.20+0	1.22-2	9.55-1	
1.40+0	2.18-2	9.43-1	1.60+0	3.63-2	9.57-1	1.80+0	5.54-2	9.52-1	
4.00-1	3.06-5	5.35-1	5.00-1	1.82-4	8.13-1	6.00-1	5.26-4	8.81-1	126
			8.00-1					1.19+0	
	6.64-3				1.21+0			1.28+0	
48 0	admium		Fluoresce	nce yie	1d = 0.84	43			
9.00-1	1.01-3	3.25-1	1.00+0	2.35-3	4.83-1	1.20+0	6.89-3	6.75-1	111
	1.05-2				7.89-1			6.59-1	
					5.77-1		7.90-2	4 10-1	
2.00+0	1 4.43-2	0.31-1	2.2070	3.40-2	3.//-1	Z.40TU	1.30-2	0.13-1	

 E_1 σ^{Exper}

 $\sigma^{ ext{Exper}}$

 σ^{Exper}

 σ^{Exper}

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold^{a,b}—Continued

 \boldsymbol{E}_1

 σ^{Exper}

 σ^{Exper}

 σ^{Exper}

\boldsymbol{E}_1	σ	<i>6</i>	\boldsymbol{E}_1	<i>o</i>	<i>o</i>	E,	<i>o</i>	σ	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
, , , , , , , , , , , , , , , , , , ,									
49	Indium		Fluoresce	nce yie	1d = 0.85	3			
6.00-	1 2.02-4	5.72-1	7.00-1	4.98-4	6.43-1	8.00-1	1.10-3	7.59-1	129
1.00+	0 3.46-3	8.95-1	1.20+0	7.38-3	9.03-1	1.40+0	1.33-2	8.92-1	
1.60+	0 2.30-2	9.33-1	1.80+0	3.61-2	9.54-1				
50	Tin		Fluoresce	nce yie	1d = 0.86	2			
1.20+	0 1.94-3	2.95-1	1.40+0	5.03-3	4.18-1	1.60+0	9.54-3	4.78-1	111
1.80+	0 1.38-2	4.50-1	2.00+0	1.78-2	3.97-1	2.20+0	2.65-2	4.24-1	
2.40+	0 3.39-2	4.01-1	2.60+0	4.00-2	3.61-1				
51	Antimony		Fluoresce	nce yie	1d = 0.87				
5.00-	1 4.54-5	6.29-1	6.00-1	1.71-4	8.13-1	7.00-1	L 4.27-4	8.99-1	126
8.00-	1 8.40-4	9.26-1	9.00-1	1.63-3	1.05+0	1.00+0	2.82-3	1.14+0	
1.10+	0 4.49-3	1.21+0	1.20+0	6.73-3	1.27+0	1.30+0	8.50-3	1.16+0	
7.00-	1 3.12-4	6.57-1	8.00-1	6.74-4	7.43-1	1.00+0	1.83-3	7.39-1	129
1.20+	0 4.41-3	8.32-1	1.40+0	8.27-3	8.48-1	1.60+0	1.47-2	9.07-1	
1.80+	0 2.27-2	9.08-1							
58	Cerium		Fluoresce	nce yie	1d = 0.91	2			
1.00+	0 3.94-4	6.75-1	1.20+0	1.02-3	7.74-1	1.40+0	2.30-3	9.18-1	129
1.60+	0 4.19-3	9.86-1	1.80+0	6.72-3	1.01+0				
64	Gadolini	um	Fluoresce	nce yie	1d = 0.93	5			
9.00-	1 6.91-5	6.21-1	1.10+0	2.12-4	6.90-1	1.20+0	2.30-4	4.99-1	150
1.40+	0 5.28-4	5.82-1	1.60+0	1.26-3	8.00-1	1.80+0	1.46-3	5.84-1	
	0 3.75-3			4.64-3	8.77-1	2.40+0	6.72-3	9.30-1	
2.60+	0 9.43-3	9.86-1	2.80+0	1.08-2	8.75-1				
73	Tantalum		Fluoresce	nce yie	1d = 0.95	7			
1.20+	0 3.82-5	3.43-1	1.40+0	8.32-5	3.51-1			5.05-1	158
	0 3.94-4				7.05-1			8.33-1	
	0 2.19-3				9.57-1	2.80+0	3.24-3	8.80-1	
3.00+	0 4.08-3	8.74-1	3.20+0	4.60-3	7.94-1				
74	Tungsten		Fluoresce	nce yie	1d = 0.95	8			
	0 1.07-4				8.04-1			8.29-1	147
	0 4.10-4				8.40-1			8.41-1	
	0 7.93-4				8.20-1			8.19-1	
	0 2.48-3				8.05-1			8.02-1	
3.50+	0 5.54-3	8.01-1	3.75+0	6.96-3	8.04-1	4.00+0	8.72-3	8.19-1	

TABLE 3. K-shell x-ray production by deuterons in target elements from beryllium to gold**.—Continued

E ₁	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_{i}	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_{i}	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.

79 Gold Fluorescence yield = 0.964 1.42+0 8.15-5 7.35-1 1.52+0 1.20-4 7.74-1 1.64+0 1.77-4 8.00-1 147 1.80+0 2.73-4 8.17-1 1.90+0 3.43-4 8.15-1 2.00+0 4.22-4 8.12-1 2.25+0 6.70-4 8.09-1 2.50+0 9.74-4 7.92-1 2.75+0 1.39-3 8.02-1 3.00+0 1.91-3 8.14-1 3.25+0 2.57-3 8.34-1 3.50+0 3.40-3 8.64-1 3.75+0 4.36-3 8.85-1 4.00+0 5.64-3 9.31-1

Cross sections and their ratios are printed in a compressed power of 10-1 notation, e.g. 9.31-1 means 9.31*10.

The ratios shown in **bold** print differ by more than a factor of 2 from the averaged ratios and were -- as described in the text -- rejected.
This rejection criterion was applied only to the Z2 > 9 data.

TABLE 4. K-shell x-ray production by helium-3 in target elements from aluminum to silver^{a,b}

<i>E</i> ₁	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma_{z}^{\text{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
	. ,, . 			···-					
13	Aluminum		Fluoresce	nce yie	1d = 0.03	39			
1.00-	1 3.80-2	1.98+0	1.25-1	1.30-1	2.08+0	1.50-	1 2.60-1	1.67+0	12
1.75-	1 4.40-1	1.36+0	2.00-1	6.80-1	1.13+0				
4.50-	2 1.20-4	1.69+0	5.00-2	3.00-4	1.68+0	6.00-	2 1.20-3	1.60+0	17
7.50-	2 3.70-3	1.07+0		9.20-3			2 2.00-2		
1.00-	1 3.10-2	1.62+0		7.10-2			1 1.50-1		
1.70-	1 2.50-1	8.85-1	1.90-1	3.80-1	8.02-1		1 6.50-1		
1.50-	1 1.72-1	1.11+0	1.80-1	3.69-1	9.99-1	2.10-	1 7.29-1	9.75-1	28
	1.22+0			2.08+0			1 3.17+0		
4 50-	2 1.24-4	1 75±0	5 00=2	3.26-4	1 82+0	6 00-	2 1.28-3	1 7110	45
	2 3.97-3			9.58-3			2 1.20-3 2 1.75-2		45
	1 3.29-2			5.12-2			1 7.55 - 2		
	1 1.45-1			2.43-1			1 7.33-2 1 3.88-1		
	1 5.96-1	_		8.28+0			1 1.95+1		
	1 3.70+1			6.49+1			1 1.01+2		
	0 2.11+2			2.80+2			3.62+2		
	0 5.54+2			7.65+2			0 1.01+3		
	0 1.27+3			1.57+3			0 1.90+3		
	0 2.22+3			2.58+3			2.76+3		
0.051	0 0 0010	/ OF 1	0.0010	1 /5:0	F 10 1	0.751			
	0 8.08+2			1.45+3			0 2.08+3		75
	+0 2.66+3 +0 4.65+3	-	6.00+0	3.68+3	7.77-1	7.50+	0 4.35+3	8.63-1	
9.004	4.65+3	9.06-1							
6.00-	1 4.46+1	8.03-1	7.50-1	9.58+1	7.87-1	9.00-	1 1.94+2	8.85-1	161
1.054	0 3.43+2	9.87-1	1.20+0	4.36+2	8.67-1		0 6.77+2		
1.504	0 9.00+2	1.03+0	1.80+0	1.35+3	1.06+0		0 1.81+3		
2.401	-0 2.31+3	1.10+0							
14	Silcon		Fluoresce	nce yie	1d = 0.0	5			
2 251	0 6.28+2	/ 77 ₋ 1	3 00±0	1.15+3	5 50-1	2 7514	0 1 67.12	6 NO 1	75
	0.20+2			3.20+3			0 1.67+3 0 3.68+3		75
	0 2.27+3		0.0040	J. 20 T J	0.00-1	7.30+	J.00 1 3	0.30-1	
9.001	0 3.3173	0.31-1							

Table 4. K-shell x-ray production by helium-3 in target elements from aluminum to silver^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
				_					
15	Phosphor	us	Fluoresce	nce yie	1d = 0.06	53			
	-1 8.97+0			2.82+1			1 6.16+1		161
	+0 1.00+2 +0 3.64+2			1.57+2 5.94+2			0 2.35+2 0 7.32+2		
	+0 1.07+3			3.34.2	1.00.0	2.101	0 7.3212	7.30 1	
18	Argon		Fluoresce	nce yie	1d = 0.11	18			
6.00)-1 2.58+C	6.77-1	7.50-1	7.39+0	8.18-1	9.00-	1 1.27+1	7.17-1	161
	+0 2.73+1			4.12+1	8.51-1		0 6.90+1		
	+0 9.05+1			1.77+2	1.04+0	2.10+	0 2.49+2	9.53-1	
2.40)+0 3.63+2	9.87-1							
22	Titanium	1	Fluoresce	nce yie	1d = 0.2	14			
5.25	-1 4.27-1	1.16+0	6.00-1	6.75-1	1.04+0	6.75-	1 1.13+0	1.07+0	160
	-1 1.61+0			3.13+0			0 5.52+0		
	1+0 8.96+0			1.90+1			0 3.57+1		
)+0 5.89+1)+0 1.68+2			8.78+1 2.13+2			0 1.25+2 0 2.80+2		
	0+0 3.29+2			4.07+2			0 2.60+2		
	+0 5.28+2								
6.00	0-1 6.83-1	1.05+0	7.50-1	1.80+0	1.12+0	9.00-	1 3.06+0	9.36-1	161
	5+0 5.71+0			9.67+0			0 1.42+1		
)+0 2.04+1			3.79+1			0 6.06+1		
)+0			1.36+2 3.10+2		3.00+	0 1.91+2	1.11+0	
3.30	770 2.4072	2 1.15+0	3.00+0	3.10+2	1.14+0				
24	Chromiun	ß	Fluoresce	nce yie	1d = 0.2	75			
5.25	5-1 1.85-1	1.12+0	6.00-1	3.30-1	1.11+0	6.75-	1 5.50-1	1.13+0	160
	7.84-1			1.60+0			0 2.79+0		
)+0 4.51+(9.93+0			0 1.84+1		
	1+0 2.99+1				9.25-1		0 6.68+1 0 1.57+2		
3.90)+0 1.89+2	2 9.95 - 1	3.30+0 4.20+0	2.26+2	9.90-1	4.50+	0 1.37+2		
)-1 3.27-1 5+0 2.91+0				9.54-1 1.10+0		1 1.40+0 0 7.12+0		161
)+0 2.91+0)+0 1.02+1				9.86-1		0 7.12 + 0 0 3.12+1		
2.40	+0 4.84+	l 9.86-1	2.70+0		1.02+0		0 1.00+2		
3.30)+0 1.25+2	2 1.02+0	3.60+0	1.49+2	9.59-1				
27	Cobalt		Fluoresce	ence yie	1d = 0.3	73			
6.00)-1 1.12-	l 1.16+0	7.50-1	3.06-1	1.19+0	9.00-	1 6.32-1	1.16+0	160
	+0 1.17+0				1.10+0		0 3.96+0		
1.80)+0 7.16+0	9.61-1	2.10+0	1.23+1	9.73-1	2.40+	0 1.92+1	9.77-1	
6.00)-1 1.39-	L 1.44+0	7.50-1	2.98-1	1.16+0	9.00-	1 7.75-1	1.42+0	161
1.05	5+0 1.41+0	1.40+0	1.20+0	2.49+0	1.47+0	1.35+	0 3.74+0	1.42+0	

TABLE 4. K-shell x-ray production by helium-3 in target elements from aluminum to silver^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
									
1 50	+0 5.51+0	1.42+0	1.80	+0 1.00+	1 1.34+0	2.10	+0 1.54+1	1.22+0	
	+0 2.34+1			+0 3.71+			+0 5.20+1		
	+0 6.83+1			+0 8.60+					
	W - 1 - 1		T31		-14 - 0 /	06			
28	Nickel		Fluores	cence yie	e1d = 0.4	106			
6.00	-1 5.97-2	8.94-1		-1 1.56-		9.00	-1 3.53-1	9.07-1	161
	5 + 0 6.86-1			+0 1.19+0			+0 1.85+0		
)+0 2.67+0			+0 5.32+0			+0 9.34+0		
)+0 1.24+1			+0 1.94+		3.00	+0 2.56+1	8.60-1	
3.30)+0 3.27+1	8.22-1	3.60	+0 5.44+	1 1.06+0				
29	Copper		Fluores	cence yi	eld = 0.4	4			
5.25	5-1 2.60-2	2 1.06+0	6.00	-1 5.00-2	2 1.07+0	6.75	-1 9.00-2	1.12+0	160
7.50	0-1 1.05-1	8.15-1		-1 3.12-			+0 5.74-1		
1.20)+0 9.35 - 1	l 1.05+0	1.50	+0 2.12+	0 1.02+0	1.80	+0 4.03+0	9.93-1	
)+0 6.81+0			+0 1.08+			+0 1.57+1		
)+0 2.16+1			+0 2.95+			+0 3.73+1		
)+0 4.81+1		4.20	+0 5.83+	1 9.51-1	4.50	+0 6.72+1	9.06-1	
4.80	0+0 8.32+1	1 9.47-1							
32	Germani	ım	Fluores	cence yi	eld = 0.5	35			
	0-1 1.81-2		7.50	-1 5.46-	2 1.18+0	9.00	-1 1.15-1	1.10+0	160
	5+0 2.31-1			+0 3.95-			+0 9.03-1		
1.80)+0 1.71+0	1.03+0	2.10	+0 2.95+	0 1.02+0	2.40	+0 4.59+0	9.95-1	
6.00	0-1 1.22-2	2 7.68-1	7.50	-1 3.83-	2 8.26-1	9.00	-1 8.56-2	8.17-1	161
	5+0 2.08-1			+0 3.68-			+0 5.67-1		
1.50	0+0 7.92-1	l 9.48-1	1.80	+0 1.56+	0 9.43-1	2.10	+0 2.88+0	9.96-1	
2.40)+0 4.14+0	8.97-1	2.70	+0 6.53+	0 9.48-1	3.00	+0 8.40+0	8.60-1	
3.30	0+0 1.27+1	l 9.56-1	3.60	+0 1.72+	1 9.85-1		•		
34	Selenium	n	Fluores	cence yi	eld = 0.5	89			
6.00	0-1 2.78-3	3.57-1	7.50	-1 1.35-	2 5.71-1	1.05	+0 9.54-2	8.85-1	161
	0+0 1.55-1				1 9.32-1		+0 4.45-1		
1.80)+0 7.89 - 3	l 8.55-1	2.10	+0 1.55+	0 9.51-1		+0 2.34+0		
2.70	0+0 3.49+0	8.84-1	3.00	+0 5.27+	0 9.34-1	3.30	+0 7.07+0	9.15-1	
3.60	0+0 1.02+3	l 9.97-1							
40	Zirconi	ım	Fluores	cence yi	eld = 0.7	73			
	0+0 3.50-2				2 1.06+0		+0 2.01-1		160
	0+0 3.58-1						+0 1.21+0		
3.30	0+0 2.37+0	0 1.41+0	4.20	+0 3.77+	0 9.98-1	4.80	+0 5.76+0	9.94-1	
41	Niobium		Fluores	cence yi	eld = 0.7	74			
1.0	5+0 1.10-2	2 8.00-1	1.20	+0 2.65-	2 1.04+0	1.35	+0 4.26-2	9.99-1	161
	0+0 6.33-2				1 9.93-1		+0 4.06-1		
	0+0 8.89-				0 9.91-1				

TABLE 4. K-shell x-ray production by helium-3 in target elements from aluminum to silver^{a,b}—Continued

E_1	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ^{Exper}	σ^{Exper}	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.

```
46
    Palladium
                   Fluorescence yield = 0.82
                                           1.35+0 8.69-3 7.31-1
1.05+0 1.85-3 5.22-1
                       1.20+0 3.84-3 5.62-1
                                                                      161
                      1.80+0 3.51-2 8.44-1
1.50+0 1.51-2 7.91-1
                                             2.10+0 7.64-2 9.85-1
2.40+0 1.09-1 8.36-1
                      2.70+0 1.79-1 8.79-1
                                             3.00+0 2.65-1 8.84-1
3.30+0 3.52-1 8.31-1
                      3.60+0 5.01-1 8.71-1
47
    Silver
                   Fluorescence yield = 0.831
1.50+0 1.41-2 9.40-1
                       1.80+0 2.99-2 9.08-1
                                             2.10+0 6.14-2 9.93-1
                                                                      160
2.40+0 1.00-1 9.58-1
                       3.00+0 2.26-1 9.37-1
                                             3.30+0 4.48-1 1.32+0
4.20+0 7.57-1 9.58-1
                     4.80+0 1.22+0 9.85-1
```

- a Cross sections and their ratios are printed in a compressed power of 10 -1 notation, e.g. 9.85-1 means 9.85*10 .
- The ratios shown in **bold** print differ by more than a factor of 2 from the averaged ratios and were -- as described in the text -- rejected.
 This rejection criterion was applied only to the Z2 > 9 data.

Table 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}

E,	σ^{Exper}	σ^{Exper}	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	$\sigma^{ m Exper}$	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
4 Beryllium			Fluoresce						
	•			•					
	4.06+3			5.43+3			6.29+3		71
	6.88+3		1.50+0	7.15+3	5.17-1	1.75+0	7.11+3	5.91-1	
2.00+0	6.82+3	6.40-1							
2.50-1	6.09+3	2.58-1	3.00-1	7.28+3	2.73-1	5.00-1	1.10+4	3.87-1	92
	1.10+4			1.07+4			1.02+4		
	9.62+3			8.91+3			8.22+3		
	1.90+1		5.00-2	3.75+1	1.59-1	6.00-2	6.54+1	1.14-1	119
8.00-2	1.59+2	8.29-2	1.00-1	3.28+2	7.88-2	1.20-1	5.44+2	7.74-2	
					11 00				
6 0	arbon		Fluoresce	nce yie.	1a = 0.0	028			
4.00-2	2.70-1	4.14+0	5.00-2	3.70-1	1.63+0	6.00-2	6.00-1	9.74-1	16
	8.40-1			1.30+0					
	9.00-1			1.60+0		7.00-2	2.30+0	1.62+0	23
	3.40+0			5.40+0			8.50+0		
	1.10+1			1.80+1			2.80+1		
	3.70+1			5.60+1			8.20+1		
	1.00+2 1.90+2		1.80-1	1.20+2	6.//-1	1.90-1	1.70+2	7.49-1	
2.00-1	1.3072	0.03-1							
5.00-2	5.60-1	2.47+0	6.00-2	9.50-1	1.54+0	7.00-2	1.60+0	1.13+0	26
	2.40+0			3.80+0			5.80+0		20
1.10-1	8.90+0	5.74-1	1.20-1	1.20+1	4.94-1		1.70+1		
1.40-1	2.40+1	4.54-1	1.50-1	3.50+1	4.71-1	1.60-1	4.30+1	4.23-1	
1.70-1	6.00+1	4.42-1	1.80-1	7.00+1	3.95-1	1.90-1	8.40+1	3.70-1	
2.00-1	1.10+2	3.85-1							
1 16-1	5 9140	2 40-1	1 251	1 0111	2 20 1				4.5
1.10-1	5.31+0	2.60-1	1.33-1	1.01+1	2.29-1				46
1.50-1	2.26+1	3.04-1	1.75-1	4.13+1	2.66-1	2.00-1	6.62+1	2.32-1	82
	1.89+2			3.44+2			1.03+3		02
	3.09+3			5.24+3			6.89+3		
	8.09+3		1.60+0	8.89+3	5.14-1		9.86+3		
	9.82+3							-	

 $\sigma^{\rm Exper}$

 σ^{Exper}

 $\boldsymbol{E_1}$

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

 σ^{Exper}

 σ^{Exper}

 $\sigma^{\rm Exper}$

 σ^{Exper}

(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
7	Nitrogen		Fluoresce	nce vie	1d = 0.00	52			
•	1,10108011		1 1402 0500	noo y ro					
9.70-	2 2.11+0	1.40+0	1.16-1	4.27+0	1.15+0	1.35-1	8.34+0	1.06+0	46
	1 4.65+0			1.06+1			1.90+1		82
	1 3.14+1			8.03+1			l 1.48+2		
	1 4.86+2			1.02+3			l 1.74+3		
	1 2.71+3			3.70+3			5.33+3		
1.204	-0 6.45+3	0.36-1	1.60+0	8.15+3	6.67-1	2.00+0	9.81+3	7.30-1	
9	Fluorine		Fluoresce	nce yie	1d = 0.01	3			
1.00+	0 1.67+3	7.79-1	1.70+0	4.49+3	8.19-1	1.80+	4.82+3	8.19-1	110
4 00-	1 7.19+1	6 29-1	6 00-1	2 00+2	3.92-1	8 00-	1 4.01+2	3 27-1	116
	+0 7.01+2			1.07+3			1.62+3		110
	0 1.98+3				4.28-1		3.05+3		
10	Neon		Fluoresce	nce yie	1d = 0.01	8			
9.70-	-2 1.36-1	2.06+0	1.16-1	3.51-1	2.17+0	1.35-	1 6.13-1	1.82+0	46
2.00-	-1 1.38+0	6.57-1	2.50-1	3.66+0	6.39-1	3.00-	1 7.10+0	5.58-1	82
	-1 2.19+1				5.19-1		1 1.12+2		02
	-1 3.09+2				6.05-1		0 9.87+2		
12	Magnesiu	m	Fluoresce	ence yie	1d = 0.03	}			
1 05	1 7 /0 0	1 0010	1 50 1	1 00 1	1 0010	1 75	1 2 401	1 7140	10
	-1 7.40-2			1.80-1	1.89+0	1.75-	1 3.40-1	1./1+0	12
2.00	-1 5.90-1	1.59+0							
1 00	+0 2.88+2	1 23±0	1 50+0	5 00+2	6.71-1	2 50+	0 1.73+3	8 13-1	19
	+0 2.39+3				9.37-1		0 3.55+3		17
	+0 4.05+3				9.99-1	1.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1130									
13	Aluminum		Fluoresce	ence yie	1d = 0.03	19			
1 00	1 (10 2	1 0010	1 05 1	2 10 2	1 7610	1 50-	1 8.60-2	1 00±0	12
	-1 6.10-3				1.76+0 1.72+0	1.50-	1 0.00-2	1.90-0	12
1./5	-1 1.70-1	1.//+0	2.00-	3.10-1	1.72+0				
2 90-	+0 2.40+2	1.32-1	3.55+0	3.50+2	1.43-1	3.90+	0 4.40+2	1.59-1	15
	+0 5.70+2				1.92-1		0 8.30+2		
4.45									
6.00	-2 2.00-4	1.24+0	7.50-2	2 7.00-4	8.40-1	8.00-	2 1.80-3	1.40+0	17
	-2 3.70-3				1.37+0	1.70-	1 8.70-2	1.04+0	
	-1 1.50-1			l 2.20-1	1.22+0				
									4.5
	+0 1.34+2				2 1.37+0		0 9.61+2		19
	+0 1.52+3				1.04+0		0 2.93+3		
4.00	+0 4.10+3	1.44+0	4.50+0	4.81+3	1.49+0	5.00+	0 5.08+3	1.42+0	

 $T_{ABLE} \ 5. \ \textit{K-} shell \ x-ray \ production \ by \ helium-4 \ in \ target \ elements \ from \ beryllium \ to \ uranium^{a,b} — Continued$

$E_{\scriptscriptstyle \parallel}$	σ ^{Exper}	σ ^{Exper}	<i>E</i> ,	σ ^{Exper}	σ ^{Exper}	E_1	σ ^{Exper}	$\sigma^{E_{\mathrm{xper}}}$	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
00.1	1 00 1	1 0010	0 00 1	0 00 1	1 1110	0.00	. 1 / 00	1 1 /010	00
	1.20-1 7.00-1			2.00-1 8.00-1				·1 1.43+0 ·0 1.21+0	22
	1.60+0			2.00+0		2.00	7-1 1.007	0 1.21+0	
.00-1	1.00+0	1.4470	J. 20-1	2.0010	1.5010				
	1.39-1			2.93-1		2.60	0-1 5.47-	1 9.21-1	28
.00-1	1.06+0	9.53-1	3.40-1	1.73+0	9.07-1				
.00-2	2.10-4	1.30+0	7.00-2	7.35-4	1.43+0	8.00	0-2 1.75-	3 1.36+0	45
	4.06-3			7.65-3				2 1.48+0	
.40-1	4.77-2	1.50+0	1.60-1	8.42-2	1.36+0			1.37+0	
	2.41-1			3.25+0				0 6.46-1	
	1.25+1			2.30+1			• .	1 6.14-1	
	8.47+1			1.17+2				-2 6.53-1	
	2.48+2			3.62+2				6.80-1	
	6.46+2			8.20+2				12 7.37-1	
	1.02+3			1.14+3				8.02-1	
	1.49+3			1.59+3				8.47-1	
	1.76+3	8.45-1		1.85+3				+3 8.49-1	
	3.17+3		4.0970	2.76+3	0.10-1	3.3	1+0 3.10	+3 8.01-1	
.92+0	3.1/+3	7.76-1							
.00+0	1.00+2	8.00-1	1.50+0	4.41+2	1.02+0	2.0	0+0 9.42	1.07+0	54
.50+0	1.57+3	1.12+0	3.00+0	2.19+3	1.14+0	3.5	0+0 2.89-	F3 1.20+0	
.00+0	3.52+3	1.23+0	4.50+0	4.18+3	1.29+0	5.0	0+0 4.83	H3 1.35+0	
.50+0	1.10+3	7.84-1	3.20+0	1.80+3	8.49-1	3.2	5+0 2.00+	F3 9.21-1	96
.00+0	2.39+3	8.38-1	4.90+0	2.60+3	7.40-1				
.00+0	2.17+3	7.61-1	6.00+0	3.30+3	8.03-1	8.0	0+0 3.91	F3 8.24-1	97
.00+1	4.15+3	8.22-1	1.20+1	4.28+3	8.33-1	1.6	0+1 4.12+	F3 8.19-1	
.00+1	3.93+3	8.20-1	2.40+1	3.58+3	7.92-1	2.8	0+1 3.38-	+3 7.95-1	
.00+1	3.30+3	7.99-1							
.00+0	1.13+2	9.04-1	1.80+0	6.64+2	9.61-1				110
. 4 Si	lcon		Fluoresce	ence yie	1d = 0.05	5			
.90+0	1.40+2	1.12-1	3.55+0	2.00+2	1.13-1	3.9	0+0 2.50-	+2 1.23-1	15
.45+0	3.10+2	1.28-1	4.80+0	3.50+2	1.32-1	5.3		+2 1.39-1	
. 6 Su	ılfur		Fluoresce	ence yie	1d = 0.07	78			
10+1	4.20+3	1.22+0	1 60+1	4 82+3	1.24+0	2 1	N + 1	+3 1.12+0	109
		1.08+0	1.00.1	4.02.3	1.24.0	2	0.1 4.45	.5 1.12.0	103
. 7 Ch	lorine		Fluoresce	ence yie	1d = 0.09	97			
2011	2 65:0	1 0010	0 50.4		1 0010		011 / /	10 1 0110	
		1.08+0	2.50+	4.60+3	1.22+0	3.0	U+1 4.46-	F3 1.21+0	31
.00+1	5.69+3	1.07+0							
. 10+1	3,10+3	1.03+0	1.60+1	4.20+3	1.17+0	2 1	0+1 3 70-	+3 9.83-1	109

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

$\boldsymbol{E_1}$	σ^{Exper}	σ^{Exper}	\boldsymbol{E}_1	σ^{Exper}	$\sigma^{ m Exper}$	\boldsymbol{E}_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ extsf{ECPSSR}}$	Ref.
	1.24+1			2.80+1			HO 4.72+1		123
	7.56+1			1.04+2			1.52+2		
	2.19+2			2.54+2		2.40	HO 2.97+2	2 1.16+0	
.60+0	4.55+2	1.43+0	2.80+0	5.04+2	1.32+0				
B A	rgon		Fluorescei	nce yie	ld = 0.13	18			
.00-1	4.15-2	6.65-1	5.00-1	4.59-1	7.58-1	8.00	-1 3.11+0	7.69-1	82
. 00+0	6.60+0	6.97-1	1.20+0	1.20+1	6.51-1				
9 Po	otassium	n	Fluoresce	nce yie	ld = 0.14	4			
	2.54+3		1.60+1	3.20+3	1.12+0	2.10-	+1 3.69+3	3 1.17+0	109
. 70+1	3.78+3	1.14+0							
0 C	alcium		Fluoresce	nce yie	1d = 0.16	63			
. 50+0	2.00+1	1.16+0	2.00+0	5.00+1	1.10+0	3.00-	+0 1.80+2	2 1.16+0	38
.00+0	3.70+2	1.13+0	5.00+0	6.40+2	1.18+0	6.00	+0 8.60+2	2 1.11+0	
.00+0	1.00+3	9.92-1	8.00+0	1.30+3	1.05+0	9.00	+0 1.40+3	3 9.66-1	
. 00+1	1.60+3	9.72-1	1.10+1	1.80+3	9.85-1	1.20	+1 1.90+3	3 9.55-1	
.00+0	7.24+2	9.36-1	9.00+0	1.48+3	1.02+0	1.20	+1 2.14+3	3 1.08+0	94
.50+1	2.62+3	1.10+0	1.80+1	2.97+3	1.12+0				
.00-1	2.41+0	1.47+0	1.00+0	5.00+0	1.28+0	1.20	+0 1.00+	1 1.30+0	123
.40+0	1.76+1	1.30+0	1.60+0	2.90+1	1.34+0	1.80	+0 4.27+	1 1.32+0	
.00+0	6.15+1	1.35+0	2.20+0	8.64+1	1.39+0	2.40	+0 1.05+2	2 1.29+0	
. 60+0	1.41+2	1.37+0	2.80+0	1.70+2	1.33+0				
00-1	1.51+0	9 23-1	1 00+0	3 34+0	8.57-1	1 20	+0 6.68+0	0.8.65-1	133
	1.13+1				8.16-1		+0 2.45+		133
				1.,0.1	0.10 1				
.00+1	3.18+3	1.14+0	2.40+1	3.36+3	1.14+0	2.80	+1 3.50+	3 1.15+0	136
1 S	candium		Fluoresce	nce yie	1d = 0.1	88			
.00-1	1.07+0	1.00+0	1.00+0	2.53+0	9.85-1	1.20	+0 4.62+	0 9.02-1	133
			1.60+0				+0 2.03+		
. 00+1	2.85+3	1.15+0	2.40+1	3.21+3	1.20+0	2.80	+1 3.32+	3 1.19+0	136
2 T	itanium		Fluoresce	nce yie	1d = 0.2	14			
. 90+0	2.40+1	3.39-1	3.90+0	5.30+1	3.24-1	4.80	+0 9.10+	1 3.29-1	14
	1.16+2								
. 20+1	1.41+3	1.01+0	2.50+1	2.89+3	1.19+0	3.00	+1 3.17+	3 1.23+0	31
	3.40+3				-		. — -	-	
. 50+0	8.80+0	1.11+0	2.00+0	2.50+1	1.16+0	3.00	+0 8.80+	1 1.12+0	38
	2.00+2				1.08+0		+0 5.70+		
	6.60+2				1.09+0		+0 8.80+		
		1.09+0			1.12+0		+1 1.70+		

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
2.00+1	2.40+3	1.10+0							42
5.00-1	1.21-1	1.25+0	6:00-1	2.61-1	1.21+0	7.00-1	4.91-1	1.19+0	67
	8.48-1			1.33+0			2.00+0		
	2.87+0			3.83+0			5.15+0		
	6.57+0			8.42+0		-	1.03+1		
	1.29+1			1.47+1			1.82+1		
	2.17+1			2.40+1		2.20+0	2.85+1	9.62-1	
2.30+0	3.22+1	9.41-1	2.40+0	3.70+1	9.42-1				
5.00-1	1.10-1	1.14+0	6.00-1	2.70-1	1.26+0	7.00-1	5.00-1	1.21+0	72
	7.00-1			8.50-1		1.00+0	1.30+0	7.53-1	
	2.10+0			3.00+0			3.80+0		
	5.10+0			6.50+0			8.50+0		
	1.00+1			1.20+1			1.50+1		
	1.90+1			2.20+1			2.60+1		
2.30+0	2.90+1	8.4/-1	2.40+0	3.10+1	7.89-1	2.50+0	3.90+1	8.72-1	
1.00+0	2.63+0	1.52+0	1.10+0	3.37+0	1.35+0	1.30+0	5.43+0	1.16+0	78
	7.80+0			1.15+1			1.83+1		, 0
	2.28+1			3.06+1			3.49+1		
	4.02+1		2.50+0	4.51+1	1.01+0		4.67+1		
2.70+0	5.67+1	9.96-1	2.80+0	6.38+1	1.00+0		7.01+1		
3.00+0	7.75+1	9.90-1	3.10+0	8.45+1	9.79-1	3.20+0	9.08+1	9.60-1	
3.30+0	1.00+2	9.67-1	3.40+0	1.11+2	9.86-1	3.50+0	1.19+2	9.76-1	
	1.23+2			1.34+2		3.80+0	1.46+2	9.58-1	
	1.58+2			1.69+2			1.75+2		
4.20+0	1.90+2	9.57-1	4.30+0	2.04+2	9.68-1	4.40+0	2.03+2	9.09-1	
2.50+0	5.70+1	1.27+0	3.20+0	1.00+2	1.06+0	3.25+0	1.10+2	1.11+0	96
4.00+0	1.79+2	1.02+0	4.90+0	2.50+2	8.62-1				
1 00±1	1.03+3	0 34-1	1 20+1	l 1.38+3	0 02_1	1 / 0.1.1	1,64+3	0 00-1	105
	1.86+3			l 2.21+3			2.32+3	_	103
	2.50+3			l 2.65+3			2.72+3		
	2.80+3			2.96+3		2.0013	. 2./213	1.1070	
			0.00		2,13,0				
	3.92-4			l 8.54-4		2.80-1	1.89-3	3.42-1	118
		4.00-1			4.82-1		1.93-2		
		6.81-1	6.00-1	l 1.59 - 1	7.40-1	7.00-1	3.15-1	7.64-1	
8.00-1	5.56-1	7.81-1							
8.00-1	7.80-1	1.09+0	1.00+0	1.81+0	1.05+0	1.20+0	3.34+0	9.63-1	133
1.40+0	5.72+0	9.31-1	1.60+0	9.15+0	9.20-1		1.33+1		
0 0011	0.0610	1 00.0							
2.00+1	2.36+3	1.08+0	2.40+	L Z./2+3	1.14+0	2.80+1	2.88+3	1.14+0	136
7.76-1	6.02-1	9.56-1	9.16-1	1.03+0	8.41-1	1.05+0	1.45+0	6.90-1	146
	6.69+0							·	
<u> </u>									
		5.90-1		1.88+1		2.50+0	3.24+1	7.24-1	148
3.00+0	5.56+1	7.10-1	3.50+0	9.01+1	7.39-1				

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ ^{Exper}	σ^{Exper}	<i>E</i> ,	σ ^{Exper}	σ ^{Exper}	E_1	σ ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
4.50-1	8.07-2	1.35+0	5.00-1	1.30-1	1.35+0	5.5	0-1 1.95	-1 1.32+0	153
	2.78-1			3.84-1				-1 1.25+0	
	6.73-1			8.64-1				+0 1.20+0	
	1.36+0			2.02+0				+0 1.15+0	
	3.97+0			5.31+0				+0 1.13+0	
	8.88+0			1.12+1				+1 1.12+0	
	2.45+1			3.42+1				+1 1.18+0	
2.60+0	6.17+1	1.22+0	2.80+0	8.03+1	1.26+0	3.0	0+0 1.03	+2 1.32+0	
	4.82-1			l 8.23-1				+0 1.06+0	160
1.00+0	1.83+0	1.06+0	1.20+0	3.57+0	1.03+0	1.4	0+0 6.29	+0 1.02+0	
1.60+0	1.03+1	1.04+0	2.00+0	2.09+1	9.70-1	2.4	0+0 3.72	+1 9.47-1	
23 V	anadium		Fluoresc	ence yie	ld = 0.2	43			
1 . 00+0	1.47+0	1.24+0	1.25+0	2.60+0	9.31-1	1 5	በ+በ ፈ ጓቦ	+0 7.83-1	54
	7.00+0			9.79+0				+1 5.08-1	J-1
	2.73+1			3 4.00+1				+0 4.50-2	
	7.59+0		J. JUT	····I	7.70-1	7.0	0.0 5.02	·· · · · · · · · · · · · · · · · · · ·	
- 00 1	7 (0 0		(00 :		1 0/10			1 1 0110	
	7.40-2			1 1.81-1				-1 1.21+0	67
	5.83-1			1 9.47-1				+0 1.17+0	
	2.07+0		1.20+0	2.69+0	1.12+0			+0 1.13+0	
1.40+0	4.90+0	1.15+0		0 6.02+0				+0 1.09+0	
1.70+0	9.34+0	1.08+0	1.80+0	0 1.13+1	1.07+0	1.9	0+0 1.37	+1 1.08+0	
2.00+0	1.62+1	1.07+0	2.10+	0 1.90+1	1.06+0	2.2	0+0 2.13	+1 1.02+0	
2.30+0	2.60+1	1.07+0	2.40+	0 2.87+1	1.03+0				
1.00+0	1.21+0	1.02+0	2.20+	0 1.97+1	9.39-1	2.3	0+0 2.26	+1 9.30-1	78
	2.59+1			0 2.96+1				+1 8.18-1	
	3.70+1			0 4.15+1				+1 8.90-1	
	5.00+1			0 4.13.1 0 5.51+1				+1 8.63-1	
	6.46+1								
				0 6.86+1				+1 8.63-1	
	8.37+1			0 9.01+1				+1 8.61-1	
	1.05+2			0 1.12+2				+2 8.03-1	
4.20+0	1.25+2	8.47-1	4.30+	0 1.36+2	8.65-1	4.4	0+0 1.38	8+2 8.25-1	
		1.11+0			1.08+0			+0 1.01+0	133
1.40+0	4.20+0	9.86-1	1.60+	0 7.06+0	1.02+0	1.8	3 0+0 1.03	3+1 9.77 - 1	
2.00+1	2.04+3	1.06+0	2.40+	1 2.38+3	1.11+0	2.8	30+1 2.68	3+3 1.17+0	1/36
24 C	hromium		Fluoresc	ence yie	1d = 0.2	275			
2.90 + 0	1.50+1	4.04-1	3.55+	0 2.60+1	3.78-1	3.0	00+0 3.40)+1 3.77-1	14
		4.48-1		0 8.10+1		3.3	3.3 3.40		
	,		_,_,		-				
		1.25+0			1.29+0			3-1 1.25+0	67
		1.28+0			1.22+0			3+0 1.25+0	
		1.21+0			1.17+0			7+0 1.17+0	
		1.17+0			1.09+0			+0 1.07+0	
1.70+0	6.97+0	1.14+0			1.10+0			2+0 1.09+0	
2.00+0	1.15+1	1.06+0	2.10+	0 1.35+1	1.05+0	2.2	20+0 1.58	3+1 1.05+0	
	1 0211	1.05+0	2 / 0.1	0 1.99+1	0 07-1				

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ₁	$\sigma^{ m Exper}$	σ^{Exper}	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	E_1	σ^{Exper}	$\sigma^{ m Exper}$	
(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
9.00-1	1.10+0	2.04+0	1.10+0	2.09+0	1.74+0	1.30+	0 4.15+0	1.83+0	80
1.50+0	5.75+0	1.48+0	1.70+0	9.93+0	1.62+0	1.90+	0 1.40+1	1.54+0	
2.10+0	2.13+1	1.66+0	2.30+0	2.56+1	1.46+0	2.50+	0 3.32+1	1.44+0	
2.70+0	4.70+1	1.59+0	2.90+0	5.40+1	1.45+0	3.10+	0 7.46+1	1.63+0	
3.30+0	8.86+1	1.60+0	3.50+0	1.13+2	1.71+0		0 1.22+2		
3.90+0	1.56+2	1.73+0	4.10+0	1.91+2	1.84+0				
6.00+0	2.91+2	1.07+0	9.00+0	6.75+2	1.09+0	1.20+	1 1.17+3	1.20+0	94
1.50+1	1.51+3	1.17+0	1.80+1	1.76+3	1.14+0				
	4.02-1			9.17-1		1.20+	0 1.80+0	1.07+0	133
1.40+0	3.06+0	1.02+0	1.60+0	4.90+0	9.98-1	1.80+	0 6.96+0	9.28-1	
2.00+1	1.86+3	1.10+0	2.40+1	2.18+3	1.14+0	2.80+	1 2.33+3	1.12+0	136
1.50+0	4.08+0	1.05+0	2.02+0	1.06+1	9.44-1	2.50+	0 2.28+1	9.89-1	148
3.00+0	4.07+1	9.85-1	3.50+0	6.86+1	1.04+0				
25 M	anganes	e	Fluoresce	nce yie	1d = 0.3	808			
	8.14-1			1.02+0		1.30+	0 1.66+0	1.03+0	78
	2.50+0			3.54+0		1.90+	0 6.27+0	9.63-1	
	1.08+1			1.23+1		2.40+	0 1.35+1	9.24-1	
	1.61+1			1.59+1			0 1.98+1		
	2.22+1			2.47+1			0 2.88+1		
	3.01+1			3.19+1			0 3.53+1		
	3.84+1			4.25+1			0 4.60+1		•
	4.94+1			5.43+1		3.90+	0 5.57+1	8.27-1	
	6.20+1			6.74+1		4.20+	0 7.19+1	8.63-1	
4.30+0	7.76+1	8.72-1	4.40+0	8.36+1	8.81-1				
8.00-1	2.70-1	1.17+0	1.00+0	6.73-1	1.17+0	1.20+	0 1.31+0	1.11+0	133
1.40+0	2.20+0	1.03+0	1.60+0	3.57+0	1.02+0	1.80+	0 5.35+0	9.97-1	
26 I	ron		Fluoresce	nce yie	1d = 0.3	4			
2.90+0	1.20+1	6.02-1	3.55+0	2.00+1	5.29-1	3.90+	0 2.50+1	4 98-1	14
	4.40+1					3.50.	0 2.3011	4.70 1	14
3.00+1	2.55+3	1.47+0	4.00+1	2.59+3	1.32+0	5.00+	1 2.66+3	1.30+0	24
6.00+1	2.75+3	1.33+0	7.00+1	2.77+3	1.35+0	8.00+	1 2.58+3	1.29+0	
	7.00+0				1.12+0	4.00+	0 6.60+1	1.22+0	38
	1.10+2			1.70+2			0 2.50+2		
	3.40+2			4.20+2		1.00+	1 5.20+2	1.07+0	
1.10+1	6.30+2	1.09+0	1.20+1	6.90+2	1.04+0				
2.00+1	1.30+3	1.02+0							42
3.00+1	2.18+3	1.26+0							49

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E_{1}	σ ^{Exper}	σ ^{Exper}	<i>E</i> ₁	σ ^{Exper}	σ ^{Exper}	E_1	σ ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
		4 00.0	4 50.0	4 7410		•			
	4.14-1 1.02+1			1.76+0 1.94+1				+0 8.64-1 +1 8.37-1	54
	4.31+1 4.53-1			5.68+1 7.48+0				+1 8.29-1	78
	9.86+0			1.10+1				+0 9.44-1 +1 8.41-1	/0
	1.41+1			1.59+1				+1 8.41-1 +1 8.98-1	
	1.93+1	_		2.15+1				+1 8.56-1	
	2.65+1			2.13+1				+1 0.36-1	
	3.59+1			3.89+1				+1 9.20-1	
	4.77+1			4.94+1				+1 8.95 - 1	
	5.66+1			6.00+1					
. 2010	J.00+1	9.07-1	4.50	0.0071	0.90-1	4.4	0+0 6.12	+1 8.58-1	
	3.20+1		3.25+0	3.50+1	1.22+0	4.0	0+0 6.33	+1 1.17+0	96
+.90+0	8.40+1	8.74-1							
L.00+1	4.56+2	9.36-1	1.20+1	6.59+2	9.89-1	1.40	0+1 8.74	+2 1.04+0	105
	1.05+3			1.34+3				+3 1.06+0	
2.20+1	1.56+3	1.12+0		1.70+3		2.6	0+1 1.80	+3 1.14+0	
2.80+1	1.85+3	1.11+0	3.00+1	1.85+3	1.07+0				
90 ₋₁	1.32-4	1 70_1	2 00-1	2.84-4	2 67-1	2 5	0_1 0 70	_4 7 7 5 1	110
	2.96-3			1.31-2				-4 3.35-1 -2 8.06-1	118
	7.96-2	–		1.49-1		0.0	0-1 3.63	-2 0.00-1	
	2.06-1			4.86-1				+0 1.21+0	133
1.40+0	1.38+0	9.10-1	1.60+0	2.69+0	1.07+0	1.8	0+0 4.07	+0 1.06+0	
.50-1	1.40-2	1.24+0	5.00-1	2.50-2	1.31+0	5.5	0-1 4.03	-2 1.34+0	153
5.00-1	6.07-2	1.35+0	6.50-1	8.70-2	1.34+0	7.0	0-1 1.20	-1 1.33+0	
7.50-1	1.61-1	1.32+0	8.00-1	2.11-1	1.31+0	8.5	0-1 2.70	-1 1.30+0	
0.00-1	3.40-1	1.29+0	1.00+0	5.17-1	1.27+0	1.1	0+0 7.48	-1 1.26+0	
1.20+0	1.04+0	1.24+0	1.30+0	1.40+0	1.22+0	1.4	0+0 1.83	+0 1.21+0	
1.50+0	2.34+0	1.19+0	1.60+0	2.93+0	1.17+0	1.8	0+0 4.38	+0 1.14+0	
2.00+0	6.22+0	1.11+0	2.20+0	8.47+0	1.08+0	2.4	0+0 1.12	+1 1.06+0	
2.60+0	1.43+1	1.03+0	2.80+0	1.80+1	1.01+0	3.0	0+0 2.22	+1 9.97-1	
2 7 C	obalt		Fluoresce	nce yie	1d = 0.3	73			
2.00+0	6.50+0	1.58+0	2.50+0	1.30+1	1.45+0	3.0	0+0 2.30	+1 1.40+0	38
		1.41+0			1.40+0			+1 1.32+0	
		1.35+0			1.27+0			+2 1.09+0	
		1.08+0			1.12+0			+2 1.17+0	
		1.06+0		6.10+2				•	
2.00+1	1.10+3	1.00+0							42
. <u>00+</u> 0	3 99-1	1.38+0	1 10+0	6 19-1	1.46+0	1 3	∩+∩ 9 75	-1 1.19+0	78
		1.04+0			9.35-1			+0 9.95-1	, 0
		9.23-1			8.93-1			+0 8.74-1	
		8.74-1			9.47-1			+0 8.49-1	
		8.46-1			8.35-1			+1 8.25-1	
(, (CI+II		0. TO T	2. JUIC	1.27.7	U.JJ I	٥. ن	U.O I.JU		
		8.07-1	3 20+0	1.6241	7.98-1	3 3	0+0 1 79	+1 7.98-1	

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium*.b—Continued

\boldsymbol{E}_1	σ^{Exper}	σ ^{Exper}	E,	σ ^{Exper}	σ ^{Exper}	E_1	σ ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	$\sigma^{ extsf{ECPSSR}}$	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
		7.86-1			7.81-1			+1 7.83-1	
	3.22+1				7.76-1	4.20	+0 3.69	+1 7.84-1	
. 30+0	3.92+1	7.77-1	4.40+0	4.35+1	8.07-1				
	1.36-1				1.14+0			-1 1.13+0	133
. 40+0	1.22+0	1.12+0	1.60+0	1.91+0	1.05+0	1.80	+0 2.81	+0 1.00+0	
	1.15+0		2.02+0	3.26+0	7.67-1			+0 7.50-1	148
. 00+0	1.23+1	7.46-1	3.20+0	1.55+1	7.63-1	3.50	+0 1.98	+1 7.33-1	
28 N	ickel		Fluoresce	nce yie	1d = 0.4	06			
		7.69-1		1.30+1		3.90	+0 1.50	+1 5.29-1	14
+.80+0	2.50+1	4.75-1	5.30+0	3.50+1	5.02-1				
3.00+1	1.71+3	1.25+0	4.00+1	1.85+3	1.15+0	5.00	+1 2.05	+3 1.19+0	24
.00+1	2.30+3	1.29+0	7.00+1	2.34+3	1.30+0	8.00	+1 2.33	+3 1.31+0	
2.00+0	2.30+0	7.67-1	3.00+0	9.10+0	7.44-1	4.00	+0 2.30	+1 7.51-1	38
.00+0	5.00+1	8.45-1	6.00+0	8.50+1	8.76-1	7.00	+0 1.10	+2 7.65-1	
		8.62-1		2.00+2		1.00	+1 2.60	+2 8.17-1	
. 10+1	2.90+2	7.59-1	1.20+1	3.30+2	7.37-1				
	6.60-1			1.40+0				+0 5.61-1	43
3.00+0	7.40+0	6.05-1	3.50+0	1.10+1	5.45-1	4.00	+0 1.80	+1 5.88-1	
	2.07+3			2.30+3				+3 1.30+0	49
3.00+1	2.21+3	1.24+0	9.00+1	2.23+3	1.27+0	1.00	+2 2.12	+3 1.24+0	
1.00+0	2.07-1	1.01+0	2.20+0	3.95+0	9.36-1	2.30	+0 4.52	+0 9.16-1	78
2.40+0	4.97+0	8.67-1	2.50+0	5.80+0	8.79-1	2.60	+0 6.66	+0 8.82-1	
. 70+0	7.32+0	8.52-1	2.80+0	8.21+0	8.45-1	2.90	+0 9.08	+0 8.31-1	
		8.34-1		1.10+1		3.20	+0 1.20	+1 7.93-1	
		8.02-1	3.40+0	1.46+1	7.94-1			+1 7.97-1	
		7.97-1			7.98-1			+1 7.99-1	
		7.66-1		2.43+1				+1 7.90-1	
20+0	2.81+1	7.91-1	4.30+0	2.97+1	7.79-1	4.40)+0 3.24	+1 7.94-1	
. 20+0	5.69+1	8.61-1	1.65+1	6.62+2	8.96-1	2.70	+1 1.18	+3 9.35-1	83
.00+0	4.00+1	6.76-1							89
		7.93-1			8.38-1			+2 9.03-1	97
		8.86-1			9.17-1			+2 8.69-1	
		9.32-1	2.40+1	1.08+3	9.48-1	2.80	+1 1.25	+3 9.62-1	
.00+1	1.30+3	9.51-1							
		1.21+0	1.60+1	7.32+2	1.03+0	2.10	+1 1.06	+3 1.07+0	109
. 70+1	1.32+3	1.05+0							
.00-1	6.90-6	4.12-1	2.10-1	1.10-5	4.19-1	2.20	-1 1.90	-5 4.79-1	120
.40-1	4.70-5	5.72-1			5.54-1			-4 5.66-1	
00-1	2 50-4	5.83-1							

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

(MeV) (barn)	E_1	σ ^{Exper}	σ ^{Exper}	<i>E</i> ,	σ ^{Exper}	σ ^{Exper}	E_1	σ^{Exper}	σ ^{Exper}	
9 Copper Fluorescence yield = 0.44 00-1 8.87-3 2.87-1	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
9 Copper Fluorescence yield = 0.44 00-1 8.87-3 2.87-1										100
9 Copper Fluorescence yield = 0.44 .00-1 8.87-3 2.87-1										133
.00-1 8.87-3 2.87-1 8.00-1 1.45-2 2.56-1 9.00-1 2.78-2 2.93-1 4 .00-0 4.05-2 2.73-1 3.55+0 6.40+0 4.01-1 3.90+0 8.70+0 4.05-1 14 .80+0 1.70+1 4.21-1 5.30+0 2.70+1 5.03-1 3.90+0 8.70+0 4.05-1 14 .80+0 1.70+1 4.21-1 5.30+0 2.70+1 5.03-1 3.90+0 8.70+0 4.05-1 14 .80+0 1.70+1 4.21-1 5.30+0 2.70+1 5.03-1 3.90+0 8.70+0 4.05-1 14 .80+0 1.70+1 4.21-1 5.30+0 2.70+1 5.03-1 3.90+0 8.70+0 4.05-1 14 .80+1 1.39+3 1.15+0 4.00+1 1.72+3 1.19+0 8.00+1 2.22+3 1.32+0 8.00+1 2.22+3 1.32+0 8.00+1 2.17+3 1.31+0 7.00+1 2.17+3 1.29+0 8.00+1 2.22+3 1.32+0 8.00+1 2.22+3 1.32+0 8.00+1 2.22+3 1.32+0 8.00+1 2.22+3 1.32+0 8.00+1 2.22+3 1.32+0 8.00+1 2.00+0 1.50+2 9.57-1 9.00+0 1.90+2 9.26-1 1.00+1 2.40+2 9.33-1 1.00+1 2.40+2 9.33-1 1.00+1 2.40+2 9.33-1 1.00+1 2.16+3 1.31+0 7.00+1 2.11+3 1.26+0 8.00+1 2.16+3 1.29+0 8.00+1 2.16+3 1.31+0 7.00+1 2.11+3 1.26+0 8.00+1 2.16+3 1.29+0 8.00+1 2.16+3 1.29+0 8.00+1 2.12+3 1.28+0 1.00+2 2.06+3 1.26+0 8.00+1 2.16+3 1.29+0 8.00+1 2.16+3 1.39+0 8.00+1 8.34-1 8.50+0 4.21+0 8.56-1 8.69-1 3.50+0 4.21+0 8.56-1 3.00+0 8.15+0 8.88-1 3.50+0 1.32+1 8.66-1 5.00+0 1.94+1 8.34-1 4.50+0 2.77+1 8.31-1 5.00+0 3.68+1 8.09-1 8.00+0 2.30+0 1.04+0 8.20+0 2.77+1 8.31-1 5.00+0 3.68+1 8.09-1 8.00+0 2.30+0 1.04+0 8.20+0 3.02+0 9.65-1 2.30+0 3.80+0 9.21-1 8.00+0 3.70+0 8.36-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 8.00+0 3.70+0 8.36-1 3.10+0 8.32+0 8.13-1 3.50+0 1.21+1 7.94-1 3.00+0 8.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 4.00+0 2.15+1 7.95-1 4.00+0 1.85+1 7.95-1 4.00+0 1.59+1 8.02-1 4.00+0 2.57+1 7.55-1 4.00+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 4.00+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.20+0 6.25+0 1.57+0 2.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.53+0 3.00+0 1.73+1 1.49+0 2.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.53+0 3.00+0 2.72+1 1.63+0 8.00+0 3.20+1 1.60+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.57+0 2.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.53+0 3.00+0 1.72+1 1.63+0 4.00+0 3.60+1 1.59+0 4.00+0 3.60+0 2.72+1 1.63+0 4.00+0 3.60+0 2.72+1 1.63+0 4.00+0 3.60+1 1.59+0 4.00+0 3.60+0 2.72+1 1.63+0 4.00+0	. 40+0	9.94-1	1.20+0	1.00+0	1.01+0	1.25+0	1.00	2.30	1.1740	
.00+0 4.05-2 2.73-1 .90+0 3.60+0 4.39-1	2 9 Co	opper		Fluoresce	ence yie	1d = 0.4	4			
1.80+0 1.70+1 1.21-1 5.30+0 2.70+1 5.03-1				8.00-1	1.45-2	2.56-1	9.0	0-1 2.78	-2 2.93-1	4
.00+1 1.39+3 1.15+0	2.90+0	3.60+0	4.39-1	3.55+0	6.40+0	4.01-1	3.9	0+0 8.70	+0 4.05-1	14
.00+1 2.17+3 1.31+0	. 80+0	1.70+1	4.21-1	5.30+0	2.70+1	5.03-1				
.00+1 2.17+3 1.31+0	3.00+1	1.39+3	1.15+0	4.00+1	l 1.72+3	1.19+0	5.0	0+1 1.86	+3 1.17+0	24
1.00+0 4.30+1 9.46-1 6.00+0 7.60+1 1.00+0 7.00+0 1.10+2 9.72-1 1.00+0 1.50+2 9.57-1 9.00+0 1.90+2 9.26-1 1.00+1 2.40+2 9.33-1 1.00+1 3.00+2 9.62-1 1.20+1 3.40+2 9.26-1 1.00+1 2.40+2 9.33-1 1.00+1 2.16+3 1.31+0 7.00+1 2.11+3 1.26+0 8.00+1 2.16+3 1.29+0 49 1.00+1 2.12+3 1.28+0 1.00+2 2.06+3 1.26+0 8.00+1 2.16+3 1.29+0 49 1.00+1 2.12+3 1.28+0 1.00+2 2.06+3 1.26+0 1.00+0 2.12+3 1.28+0 1.00+2 2.06+3 1.26+0 1.00+0 2.12+3 1.28+0 1.00+2 2.06+3 1.26+0 1.00+0 1.94+0 8.74-1 54 1.50+0 4.21+0 8.56-1 3.00+0 8.15+0 8.88-1 3.50+0 1.32+1 8.66-1 5.00+0 1.94+1 8.34-1 4.50+0 2.77+1 8.31-1 5.00+0 3.68+1 8.09-1 1.20+1 3.15+2 8.58-1 2.00+1 9.30+2 1.16+0 59 1.00+0 2.30+0 1.04+0 1.02+0 8.40-1 1.90+0 1.85+0 1.01+0 1.50+0 1.00+0 2.81+0 1.06+0 2.20+0 3.02+0 9.65-1 2.30+0 3.38+0 9.21-1 1.40+0 3.74+0 8.77-1 2.50+0 4.22+0 8.58-1 2.60+0 4.70+0 8.33-1 1.70+0 5.45+0 8.49-1 2.80+0 6.12+0 8.42-1 2.90+0 6.84+0 8.35-1 3.00+0 8.36+0 8.36+0 3.30+0 9.80+0 7.79-1 3.40+0 1.85+1 7.99-1 3.50+0 1.21+1 7.94-1 3.60+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 4.00+0 2.57+1 8.25-1 4.00+0 2.57+1 8.25-1 4.00+0 2.57+1 8.25-1 4.00+0 2.57+1 8.25-1 4.00+0 3.30+0 1.54+0 2.20+0 4.65+0 1.49+0 2.40+0 2.57+1 8.25-1 4.00+0 3.30+0 1.54+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.20+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 3.60+0 3.60+0 3.22+1 3.60+0 3.60+0 3.60+0 3.60+1 3.50+0 3.60+0 3.60+0 3.60+0 3.60+1 3.60+0 3.60+0 3.60+0 3.60+0 3.60+0 3.60+0 3.60+0 3.60+0 3.60+0										
.00+0 1.50+2 9.57-1	2.00+0	2.30+0	1.04+0	3.00+0	8.60+0	9.37-1	4.0	0+0 2.30	+1 9.89-1	38
.10+1 3.00+2 9.62-1				6.00+0	7.60+1	1.00+0	7.0	0+0 1.10	+2 9.72-1	
.00+1 1.42+3 1.18+0							1.0	0+1 2.40	+2 9.33-1	
.00+1 2.16+3 1.31+0 7.00+1 2.11+3 1.26+0 8.00+1 2.16+3 1.29+0 .00+1 2.12+3 1.28+0 1.00+2 2.06+3 1.26+0 .00+0 1.40-1 9.43-1 1.50+0 6.56-1 8.69-1 2.00+0 1.94+0 8.74-1 3.50+0 4.21+0 8.56-1 3.00+0 8.15+0 8.88-1 3.50+0 1.32+1 8.66-1 3.00+0 1.94+1 8.34-1 4.50+0 2.77+1 8.31-1 5.00+0 3.68+1 8.09-1 .20+1 3.15+2 8.58-1 2.00+1 9.30+2 1.16+0 59 .00+0 2.30+0 1.04+0 68 .00+0 2.30+0 1.04+0 78 .50+0 7.09-1 9.39-1 1.70+0 1.02+0 8.40-1 1.90+0 1.85+0 1.01+0 1.10+0 2.81+0 1.06+0 2.20+0 3.02+0 9.65-1 2.30+0 3.88+9 9.21-1 2.40+0 3.74+0 8.77-1 2.50+0 4.22+0 8.58-1 2.60+0 4.70+0 8.33-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 8.30+0 9.80+0 7.79-1 3.40+0 1.08+1 7.79-1 3.50+0 1.29+1 8.02-1 8.00+0 1.35+1 8.09-1 3.70+0 1.85+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 8.00+0 1.67+1 7.77-1 4.00+0 1.85+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 8.00+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.20+0 4.65+0 1.49+0 2.20+0 3.00+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 8.20+0 1.37+1 1.49+0 2.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 1.37+1 1.49+0 3.60+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 4.00+0 3.69+1 1.59+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0 3.60+0 2.72+1 1.63+0 3.60+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0 3.60+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0 3.60+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0 3.60+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0 3.60+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0 3.60+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0 3.60+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+	. 10+1	3.00+2	9.62-1	1.20+1	1 3.40+2	9.26-1				
.00+1 2.12+3 1.28+0										49
00+0 1.40-1 9.43-1							8.0	0+1 2.16	+3 1.29+0	
.50+0 4.21+0 8.56-1 3.00+0 8.15+0 8.88-1 3.50+0 1.32+1 8.66-1 .00+0 1.94+1 8.34-1 4.50+0 2.77+1 8.31-1 5.00+0 3.68+1 8.09-1 .20+1 3.15+2 8.58-1 2.00+1 9.30+2 1.16+0 59 .00+0 2.31+1 9.07-1 62 .00+0 2.30+0 1.04+0 68 .50+0 7.09-1 9.39-1 1.70+0 1.02+0 8.40-1 1.90+0 1.85+0 1.01+0 .10+0 2.81+0 1.06+0 2.20+0 3.02+0 9.65-1 2.30+0 3.38+0 9.21-1 .40+0 3.74+0 8.77-1 2.50+0 4.22+0 8.58-1 2.60+0 4.70+0 8.33-1 .70+0 5.45+0 8.49-1 2.80+0 6.12+0 8.42-1 2.90+0 6.84+0 8.35-1 8.00+0 7.67+0 8.36-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 8.30+0 9.80+0 7.79-1 3.40+0 1.08+1 7.79-1 <t< td=""><td>0.00+1</td><td>2.12+3</td><td>1.28+0</td><td>1.00+2</td><td>2 2.06+3</td><td>1.26+0</td><td></td><td></td><td></td><td></td></t<>	0.00+1	2.12+3	1.28+0	1.00+2	2 2.06+3	1.26+0				
.00+0 1.94+1 8.34-1 4.50+0 2.77+1 8.31-1 5.00+0 3.68+1 8.09-1 .20+1 3.15+2 8.58-1 2.00+1 9.30+2 1.16+0 59 .00+0 2.11+1 9.07-1 62 .00+0 2.30+0 1.04+0 68 .00+0 2.01-1 1.35+0 1.10+0 2.70-1 1.23+0 1.30+0 4.64-1 1.07+0 78 .50+0 7.09-1 9.39-1 1.70+0 1.02+0 8.40-1 1.90+0 1.85+0 1.01+0 .10+0 2.81+0 1.06+0 2.20+0 3.02+0 9.65-1 2.30+0 3.38+0 9.21-1 .10+0 2.74+0 8.77-1 2.50+0 4.22+0 8.58-1 2.60+0 4.70+0 8.33-1 .10+0 3.74+0 8.77-1 2.50+0 4.22+0 8.58-1 2.60+0 4.70+0 8.33-1 .20+0 3.74+0 8.36-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 .30+0 7.67+0 8.36-1 3.40+0 1.08+1 7.79										54
2.20+1 3.15+2 8.58-1										
2.00+0 2.11+1 9.07-1 2.00+0 2.30+0 1.04+0 3.00+0 2.01-1 1.35+0 3.00+0 2.01-1 1.35+0 3.00+0 2.01-1 1.35+0 3.00+0 2.01-1 1.35+0 3.00+0 2.01-1 1.35+0 3.00+0 2.01-1 1.35+0 3.00+0 2.81+0 1.06+0 3.00+0 2.01+0 1.02+0 8.40-1 3.00+0 2.81+0 1.06+0 3.00+0 3.74+0 8.77-1 3.50+0 4.22+0 8.58-1 3.00+0 5.45+0 8.49-1 3.00+0 6.24+0 8.35-1 3.00+0 7.67+0 8.36-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 3.30+0 9.80+0 7.79-1 3.40+0 1.08+1 7.79-1 3.50+0 1.21+1 7.94-1 3.60+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 3.90+0 1.67+1 7.77-1 4.00+0 1.85+1 7.95-1 4.10+0 1.97+1 7.85-1 4.20+0 2.15+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 3.00-1 1.60-1 1.69+0 3.00+0 1.48+0 1.53+0 3.00+0 3.30+0 1.59+0 3.00+0 3.30+0 1.49+0 3.20+0 4.65+0 1.49+0 3.40+0 2.11+1 1.53+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 1.37+1 1.49+0 3.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0	+.00+0	1.94+1	8.34-1	4.50+0) 2.//+1	8.31-1	3.0	U+U 3.68	+1 8.09-1	
2.00+0 2.30+0 1.04+0 2.00+0 2.01-1 1.35+0	L.20+1	3.15+2	8.58-1	2.00+1	1 9.30+2	1.16+0				59
00+0 2.01-1 1.35+0 1.10+0 2.70-1 1.23+0 1.30+0 4.64-1 1.07+0 78 50+0 7.09-1 9.39-1 1.70+0 1.02+0 8.40-1 1.90+0 1.85+0 1.01+0 <t< td=""><td>4.00+0</td><td>2.11+1</td><td>9.07-1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>62</td></t<>	4.00+0	2.11+1	9.07-1							62
1.50+0 7.09-1 9.39-1 1.70+0 1.02+0 8.40-1 1.90+0 1.85+0 1.01+0 2.81+0 1.06+0 2.20+0 3.02+0 9.65-1 2.30+0 3.38+0 9.21-1 2.40+0 3.74+0 8.77-1 2.50+0 4.22+0 8.58-1 2.60+0 4.70+0 8.33-1 2.70+0 5.45+0 8.49-1 2.80+0 6.12+0 8.42-1 2.90+0 6.84+0 8.35-1 3.00+0 7.67+0 8.36-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 3.40+0 1.08+1 7.79-1 3.50+0 1.21+1 7.94-1 3.50+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 4.00+0 1.67+1 7.77-1 4.00+0 1.85+1 7.95-1 4.10+0 1.97+1 7.85-1 4.20+0 2.15+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 4.40+0 9.17-1 1.59+0 1.60+0 1.48+0 1.53+0 1.80+0 2.36+0 1.57+0 2.40+0 9.330+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.60+0 8.68+0 1.54+0 2.80+0 1.11+1 1.53+0 3.00+0 1.37+1 1.49+0 3.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0	2.00+0	2.30+0	1.04+0							68
2.10+0 2.81+0 1.06+0 2.20+0 3.02+0 9.65-1 2.30+0 3.38+0 9.21-1 2.40+0 3.74+0 8.77-1 2.50+0 4.22+0 8.58-1 2.60+0 4.70+0 8.33-1 2.70+0 5.45+0 8.49-1 2.80+0 6.12+0 8.42-1 2.90+0 6.84+0 8.35-1 3.00+0 7.67+0 8.36-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 3.30+0 9.80+0 7.79-1 3.40+0 1.08+1 7.79-1 3.50+0 1.21+1 7.94-1 3.60+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 4.90+0 1.67+1 7.77-1 4.00+0 1.85+1 7.95-1 4.10+0 1.97+1 7.85-1 4.20+0 2.15+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 4.40+0 9.17-1 1.59+0 1.60+0 1.48+0 1.53+0 1.80+0 2.36+0 1.57+0 2.00+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.60+0 8.68+0 1.54+0 2.80+0 1.11+1 1.53+0 3.00+0 1.37+1 1.49+0 3.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0	1.00+0	2.01-1	1.35+0	1.10+0	0 2.70-1	1.23+0	1.3	0+0 4.64	-1 1.07+0	78
2.50+0 4.22+0 8.58-1 2.60+0 4.70+0 8.33-1 2.70+0 5.45+0 8.49-1 2.80+0 6.12+0 8.42-1 2.90+0 6.84+0 8.35-1 3.00+0 7.67+0 8.36-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 3.40+0 1.08+1 7.79-1 3.50+0 1.21+1 7.94-1 3.50+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 4.00+0 1.85+1 7.95-1 4.10+0 1.97+1 7.85-1 4.20+0 2.15+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 4.40+0 9.17-1 1.59+0 1.60+0 1.48+0 1.53+0 1.80+0 2.36+0 1.57+0 2.00+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0	1.50+0	7.09-1	9.39-1							
2.70+0 5.45+0 8.49-1 2.80+0 6.12+0 8.42-1 2.90+0 6.84+0 8.35-1 3.00+0 7.67+0 8.36-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 3.40+0 1.08+1 7.79-1 3.50+0 1.21+1 7.94-1 3.60+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 4.00+0 1.85+1 7.95-1 4.10+0 1.97+1 7.85-1 4.20+0 2.15+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 4.40+0 9.17-1 1.59+0 1.60+0 1.48+0 1.53+0 1.80+0 2.36+0 1.57+0 2.40+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0										
3.00+0 7.67+0 8.36-1 3.10+0 8.32+0 8.13-1 3.20+0 8.99+0 7.90-1 3.40+0 1.08+1 7.79-1 3.50+0 1.21+1 7.94-1 3.60+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 3.90+0 1.67+1 7.77-1 4.00+0 1.85+1 7.95-1 4.10+0 1.97+1 7.85-1 4.20+0 2.15+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 4.40+0 9.17-1 1.59+0 1.60+0 1.48+0 1.53+0 1.80+0 2.36+0 1.57+0 2.00+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.60+0 8.68+0 1.54+0 2.80+0 1.11+1 1.53+0 3.00+0 1.37+1 1.49+0 3.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0										
3.30+0 9.80+0 7.79-1 3.40+0 1.08+1 7.79-1 3.50+0 1.21+1 7.94-1 3.60+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 4.00+0 1.85+1 7.95-1 4.10+0 1.97+1 7.85-1 4.20+0 2.15+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 4.40+0 9.17-1 1.59+0 1.60+0 1.48+0 1.53+0 1.80+0 2.36+0 1.57+0 2.40+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.60+0 8.68+0 1.54+0 2.80+0 1.11+1 1.53+0 3.00+0 1.37+1 1.49+0 3.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0										
3.60+0 1.35+1 8.09-1 3.70+0 1.46+1 8.02-1 3.80+0 1.59+1 8.02-1 4.09+0 1.67+1 7.77-1 4.00+0 1.85+1 7.95-1 4.10+0 1.97+1 7.85-1 4.20+0 2.15+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 4.40+0 9.17-1 1.59+0 1.60+1 1.48+0 1.53+0 1.80+0 2.36+0 1.57+0 2.40+0 9.17-1 1.59+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.60+0 8.68+0 1.54+0 2.80+0 1.11+1 1.53+0 3.00+0 1.37+1 1.49+0 3.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0										
8.90+0 1.67+1 7.77-1										
8.20+0 2.15+1 7.95-1 4.30+0 2.27+1 7.81-1 4.40+0 2.57+1 8.25-1 8.00-1 1.60-1 1.60+0 1.60-1 1.08+0 1.20+0 5.10-1 1.62+0 80 8.40+0 9.17-1 1.59+0 1.60+0 1.48+0 1.53+0 1.80+0 2.36+0 1.57+0 2.40+0 6.25+0 1.47+0 2.40+0 6.25+0 1.47+0 3.00+0 1.37+1 1.49+0 3.00+0 1.37+1 1.49+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 1.63+0 3.60+0 2.72+1 2.60+0 3.60+0 2.72+1 3.60+0 2.72+1 3.60+0 2.72+1 3.60+0 2.72+1 3.60+0 2.72+1 3.60+0 2.72+1 3.60+0 2.72+1 3.60+0 2.72+1 3.60+0 3.60+0 3										
1.40+0 9.17-1 1.59+0										
1.40+0 9.17-1 1.59+0 1.60+0 1.48+0 1.53+0 1.80+0 2.36+0 1.57+0 2.00+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.60+0 8.68+0 1.54+0 2.80+0 1.11+1 1.53+0 3.00+0 1.37+1 1.49+0 3.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0	9.00-1	1.60-1	1.69+0	1.00+	0 1.60-1	1.08+0	1.2	0+0 5.10	-1 1.62+0	80
2.00+0 3.30+0 1.49+0 2.20+0 4.65+0 1.49+0 2.40+0 6.25+0 1.47+0 2.60+0 8.68+0 1.54+0 2.80+0 1.11+1 1.53+0 3.00+0 1.37+1 1.49+0 3.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0							1.8	0+0 2.36	5 + 0 1.57+0	
3.20+0 1.82+1 1.60+0 3.40+0 2.11+1 1.52+0 3.60+0 2.72+1 1.63+0 3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0	2.00+0	3.30+0	1.49+0	2.20+	0 4.65+0	1.49+0	2.4	0+0 6.25	3+0 1.47+0	
3.80+0 3.22+1 1.62+0 4.00+0 3.69+1 1.59+0				2.80+	0 1.11+1	1.53+0				
							3.6	0+0 2.72	2+1 1.63+0	
3.20+0 6.40+1 1.26±0 1.65+1 6.61+2 1.06+0 2.70+1 1.08+3 9.80-1 83	3.80+0	3.22+1	1.62+0	4.00+	0 3.69+1	1.59+0				
	5.20+0	6.40+1	1.26±0	1.65+	1 6.61+2	2 1.06+0	2.7	0+1 1.08	3+3 9.80-1	83

K-SHELL X-RAY PRODUCTION CROSS SECTIONS

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E_1	$\sigma^{\rm Exper}$	$\sigma^{ m Exper}$	<i>E</i> ₁	σ^{Exper}	$\sigma^{ m Exper}$	E_1	σ ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
.00+0	7.42+1	9.79-1	9.00+0	1.92+2	9.36-1	1.20	+1 3.67+	2 1.00+0	94
. 50+1	5.55+2	1.03+0	1.80+1	7.22+2	1.03+0				
	3.31-2			9.07-2				1 8.44-1	99
	3.79-1		1.41+0	4.92-1	8.29-1	1.50)+0 6.35-	·1 8.41-1	
. / 1+0	1.05+0	8.45-1							
	4.83-5			6.19-4				3 4.76-1	103
.00-1	9.10-3	6.09-1	7.00-1	2.17-2	7.02-1	8.00	0-1 4.84-	2 8.54-1	
	2.36+2			3.65+2				-2 1.02+0	105
	6.36+2			8.14+2				1.04+0	
	9.75+2 1.34+3			1.09+3 1.42+3		2.60)+1 1.18+	1.10+0	
00+1	1.3473	1.17+0	3.00+1	1.4273	1.10+0				
	3.68+2		1.60+1	7.22+2	1.21+0	2.10	0+1 9.32+	2 1.09+0	109
/0+1	1.20+3	1.03+0							
3.50-1	2.54-4	3.41-1	4.00-1	7.52-4	4.43-1	4.50	0-1 1.84-	3 5.52-1	118
	3.69-3		6.00-1	1.12-2	7.50-1	7.00	0-1 2.62-	-2 8.47-1	
.00-1	4.84-2	8.54-1							
	1.58-4			5.83-4				-3 6.60-1	126
		8.26-1		9.99-3				2 1.01+0	
	3.69-2 2.73-1	1.05+0 8.70-1	8.00-1	5.81-2	1.02+0	1.00	0+0 1.42-	-1 9.57-1	
00-1	6.29-2	1 1110	1 0040	1.67-1	1 1240	1 20)+O 3 EO-	-1 1 1210	122
	6.07-1			1.00+0				-1 1.12+0 -0 1.00+0	133
	0.07 1	1.05.0	1.00.0	1.00.0	1.03.0	1.00	,,0 1.51	1.0010	
3.00-1	7.96-2	1.40+0	9.00-1	1.26-1	1.33+0	1.00	0+0 2.16-	-1 1.45+0	134
. 10+0	3.14-1	1.42+0	1.20+0	4.49-1	1.43+0	1.30	0+0 6.34-	-1 1.47+0	
		1.36+0		1.02+0		1.60	0+0 1.19+	HO 1.23+0	
. /0+0	1.42+0	1.1/+0	1.80+0	1.70+0	1.13+0				
	9.60-1			3.15+0		2.50	0+0 6.55+	HO 1.33+0	148
.00+0	1.23+1	1.34+0	3.50+0	2.03+1	1.33+0				
								-1 1.06+0	160
						1.40	0+0 6.59	-1 1.14+0	
.60+0	1.03+0	1.07+0	2.00+0	2.27+0	1.02+0	2.40	0+0 4.13	HO 9.69 - 1	
80 Z:	inc	1	Fluoresce	nce yie	ld = 0.4	7			
		1.09+0			1.07+0			-1 1.05+0	67
			1.96+0			2.16	5+0 2.12+	HO 9.75-1	
30+0	2.96+0	9.91-1	2.46+0	3.55+0	1.02+0				
			2.20+0					HO 8.73-1	78
			2.50+0					HO 8.06-1	
/0+0	3.94+0 E E010	0.21-1 0.11-1	2.80+0	4.44+0	0.16-1 0.10-1	2.90		HO 8.17-1	
3010	J.JÖ+U 7 11⊥∩	8.11-1	3 / N±0	0.24+U	8.12-1	3.20	J+U 0.424 1±0 0.424	+0 7.51-1 +0 7.35-1	
. 5070	/.11+0	1.2I-I	J.40TU	7.74+0	/.4U-I	3.30	JTU 0.441	LO 1.33-T	

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

$\boldsymbol{E_1}$	σ ^{Exper}	σ ^{Exper}	<i>E</i> ,	σ ^{Exper}	σ ^{Exper}	E_{1}	σ ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
.60+0	9.42+0	7.48-1	3.70+	1.04+1	7.55-1	3.80	0+0 1.13	+1 7.54-1	
	1.14+1			1.23+1				+1 7.50-1	
. 20+0	1.54+1	7.49-1	4.30+	0 1.65+1	7.46-1	4.40	0+0 1.81	+1 7.63-1	
1 G	allium		Fluoresc	ence yie	1d = 0.5	07			
. 29+0	2.03-1	9.08-1	1.49+	3.66-1	9.22-1	1.69	9+0 6.11	-1 9.46-1	67
90+0	9.41-1	9.35-1	2.10+	0 1.36+0	9.32-1	2.3	0+0 1.91	+0 9.40-1	
. 41+0	2.21+0	9.20-1							
1.10+1	2.45+2	1.20+0	1.60+	1 6.37+2	1.54+0	2.1	0+1 8.29	+2 1.34+0	109
. 70+1	1.18+3	1.41+0							
32 G	ermaniu	n	Fluoresc	ence yie	ld = 0.5	35			
L.00+0	6.76-2	1.21+0	1.10+	0 9.08-2	1.08+0	1.3	0+0 1.61	-1 9.57-1	78
	2.62-1			0 3.89-1				-1 8.47-1	
. 10+0	1.05+0	9.72-1		0 1.11+0		2.3	0+0 1.30	+0 8.62-1	
. 40+0	1.48+0	8.41-1	2.50+	0 1.66+0	8.14-1	2.6	0+0 1.83	+0 7.81-1	
	2.17+0			0 2.42+0				+0 7.93-1	
	2.96+0			0 3.28+0				+0 7.62-1	
	4.08+0			0 4.54+0				+0 7.91-1	
	5.56+0			0 5.91+0				+0 7.57-1	
	6.92+0			0 7.59+0				+0 7.33-1	
. 20+0	8.72+0	7.36-1	4.30+	0 9.17+0	7.18-1	4.4	0+0 1.00	+1 7.28-1	
20+0	3.47+1	1.51+0	1.65+	1 4.47+2	1.24+0	2.7	0+1 7.75	+2 1.08+0	83
3.00-1	4.19-2	2.05+0	9.00-	1 5.99-2	1.71+0	1.0	0+0 8.40	-2 1.51+0	134
. 10+0	1.11-1	1.32+0	1.20+	0 1.63-1	1.35+0	1.3	0+0 2.21	-1 1.31+0	
	2.88-1			0 3.65-1	1.22+0	1.6	0+0 4.36	-1 1.13+0	
.70+0	5.72-1	1.18+0	1.80+	0 7.06-1	1.17+0				
3.00-1	2.49-2	1.22+0	1.00+	0 6.87-2	1.23+0	1.2	0+0 1.50	-1 1.24+0	160
	2.76-1			0 4.53-1				+0 1.14+0	
	1.87+0								
13 A	rsenic		Fluoresc	ence yie	eld = 0.5	62			
. 36+0	1.13-1	7.61-1	1.57+	0 2.21-1	8.37-1	1.7	7+0 3.54	-1 8.41-1	67
								-1 8.89-1	
	8.66-1				9.46-1			+0 9.59-1	
34 S	elenium		Fluoresc	ence yie	eld = 0.5	89			
L.18+0	6.10-2	1.01+0	1.37+	0 1.13-1	9.98-1	1.5	8+0 1.92	-1 9.53-1	67
	3.04-1			0 4.95-1					
. 00+0	3.03-2	1.03+0	1.104	0 4.82-2	2 1.08+0	1.3	0+0 7.36	5-2 8.08-1	78
	1.21-1				6.92-1			5-1 7.14-1	.0
	3.86-1				9.25-1			-1 9.46-1	
	8.87-1				8.20-1			+0 8.45-1	
	1.30+0				8.56-1		0+0 1.62	2+0 8.28-1	
	1.76+0			0 1.89+0			0+0 2.11	+0 7.64-1	

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ₁	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
3.30+	0 2.62+0	8.53-1	3.40+	0 3.15+0	9.26-1	3.50	+0 2.84+	0 7.56-1	
	0 3.41+0				7.86-1			0 7.81-1	
	0 4.26+0				8.37-1			0 7.97-1	
	0 5.90+0				7.74-1			0 7.24-1	
1 00+	-1 8.94+1	1 07+0	1 20+	1 1 25+2	2 9.78-1	1 40	±1 1 70±	2 1.01+0	105
	1 2.44+2				2 1.13+0			2 1.01+0	103
	1 4.41+2								
					2 1.14+0	2.00	+1 3./0+	2 1.16+0	
2.001	-1 6.20 + 2	1.14+0	3.00+	1 0./9+2	2 1.15+0				
1.50+	0 1.32-1	8.07-1	2.02+	0 3.94-1	1 7.55-1	2.50	+0 8.25-	1 7.17-1	148
	0 1.56+0				7.20-1			0 7.10-1	2.0
	0 2.85+0				6.71-1	0.50		0 7.10 1	
	_								
35	Bromine		Fluoresc	ence yie	eld = 0.6	15			
1.104	1 9.68+1	1.15+0	1.60+	1 2 42+2	2 1.28+0	2 10	+1 3 76+	2 1.22+0	109
	1 4.99+2		1.00	1 2.72.2	1.20.0	2.10	11 3.701	2 1.2210	109
2.701	1 4.3312	1.1210							
37	Rubidium		Fluoresc	ence yie	e1d = 0.6	67			
1.17+	-0 2.00-2	8.35-1	1.37+	0 3.80-2	2 8.01-1				67
1.00+	-0 2.00-2	1.71+0	1.20+	0 3.80-2	2 1.42+0	1.40	+0 5 50-	2 1.06+0	72
	0 7.30-2				7.58-1			1 8.67-1	, ,
	0 7.30 2				l 7.92-1				
	0 2.20-1 0 9.20-1				1.04+0			1 8.67-1	
	0 9.20-1 0 1.20+1							0 1.06+0	
					l 1.07+0			1 9.81-1	
	0 3.20+1		1.00+	1 4.40+	l 1.02+0	1.10	+1 5.50+	1 1.01+0	
1.204	-1 7.00+1	1.03+0							
1.50+	0 5.49-2	7.91-1	2.02+	0 1.85-1	8.12-1	2 50	+n 4 1n-	1 8.03-1	148
	0 8.20-1				8.67-1	2.50	10 4.10	1 0.03 1	140
39	Yttrium		Fluoresc	ence yie	e1d = 0.7	1			
1.00+	0 4.30-3	6.67-1	1.50+	0 3.18-2	2 7.98-1	2.00	+0 1.13-	1 8.79-1	54
2.50+	0 2.78-1	9.20-1	3 00+	0 5 68-1	9 60-1	3 50	+n 1 nn+	0.75 1	34
3 75+	0 1.40+0	1 07+0	4 nn±	0 3.00 J	1 1 0540	4 25	10 1.001	0 1.23+0	
	0 2.56+0			0 1.7110	1.0510	4.23	TU 2.40T	0 1.23+0	
1.20+	1 3.60+1	8.15-1	2.00+	1 1.09+2	2 7.92-1				59
2 001	0 7 00 1	1 2010	/ 00:	0 0 10:	1 0010	F 0-	10 / 00:		
	0 7.80-1							0 1.22+0	95
	0 7.10+0			U 1.60+1	1.08+0	1.00	+1 3.10+	1 1.12+0	
1.20+	1 5.30+1	1.20+0							
1.00+	1 2.63+1	9.53-1	1.20+	1 4.58+1	1.04+0	1.40	+1 6.40+	1 9.97-1	105
	1 9.24+1							2 1.08+0	100
	1 1.92+2		2.40+	1 2.28+2	2 1.08+0 2 1.19+0	2.60		2 1.19+0	
	1 2.77+2		3 00+	1 3.06+2	1.19+0	2.00	. 1 2.001	- 1.1910	
2.001	_ ~.,,.	1.13.0	3.001	. J. UU FZ					

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

	σ^{Exper}	$\sigma^{ m Exper}$	<i>E</i> ₁	σ ^{Exper}	σ ^{Exper}	E_1	σ ^{Exper}	σ ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ ^{ECPSSK}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
0 Z	irconiu	n	Fluoresce	nce vie	1d = 0.7	3			
	2.27+2			3.24+2				3+2 9.77-1	24
.00+1	5.51+2	1.09+0	7.00+1	5.99+2	1.07+0	8.00)+1 6.42	2+2 1.06+0	
. 00+1	1.20+2	1.05+0							42
	2.20-2			8.20-2		2.5	0+0 1.90	0-1 8.09-1	148
.00+0	3.67-1	7.95-1	3.50+0	6.40-1	7.97-1				
1 N	iobium		Fluoresce	nce yie	1d = 0.7	4			
. 00+1	1.70+2	8.61-1	4.00+1	2.37+2	8.02-1	5.0	0+1 3.23	3+2 8.52-1	24
	3.96+2		7.00+1	4.75+2	9.50-1			0+2 9.61-1	
USTO	5.40-3	1 7610	1 2210	1.10-2	1 1/40	1 4	7TU 3 30)_2 1 17±0	87
	4.30-2) 1.10-2) 8.50-2				0-2 1.17+0 0-1 1.11+0	0 /
	1.40-1			2.00-1				0-1 1.11+0 0-1 1.15+0	
	1.40-4				1.04+0			7-3 1.02+0	126
	7.37-3 4.04-2			1.44-2		1.4	4+0 2.57	7-2 1.31+0	
. 00+0	4.04-2	1.31+0	1.00+0	7.02-2	1.40+0				
. 02+0	6.20-2	7.75-1	2.50+0	1.46-1	7.98-1	3.0	0+0 3.00	0-1 8.31-1	148
.50+0	5.03-1	7.99-1							
2 M	olybden	um	Fluoresce	ence yie	1d = 0.7	65			
.90+0	8.20-1	3.27+0	5.30+0	2.10+0	1.01+0				14
au+u	7.90-1	Z 15±0	3 55±0	1.20+0	2 20+0	3 0	n ⊥ ∩ 1 /₁/	0+0 1.92+0	15
	1.60+0			1.80+0				0+0 9.65-1	1.,
						3.3			
		6.09-1			5.66-1	2.5		0-2 4.80-1	43
	1.10-2 1.40-1				5.66-1 5.23-1	2.5		0-2 4.80-1 0-1 4.64-1	43
. 00+0		4.92-1	3.50+0	2.60-1		2.5 4.0	0+0 3.70		
. 00+0 . 00+0	1.40-1	4.92-1 7.41-1	3.50+0 1.50+0	2.60-1	5.23-1	2.5 4.0 2.0	0+0 3.70 0+0 5.8	0-1 4.64-1	
. 00+0 00+0 50+0	1.40-1 2.00-3	4.92-1 7.41-1 9.95-1	3.50+0 1.50+0 3.00+0	2.60-1 1.83-2 2.93-1	5.23-1	2.5 4.0 2.0	0+0 3.70 0+0 5.8	0-1 4.64-1 1-2 9.68-1	
3.00+0 1.00+0 2.50+0 1.00+0	1.40-1 2.00-3 1.43-1 8.86-1	7.41-1 9.95-1 1.11+0	3.50+0 1.50+0 3.00+0 4.50+0	2.60-1 1.83-2 2.93-1 1.38+0	5.23-1 1.01+0 1.03+0 1.15+0	2.5 4.0 2.0 3.7	0+0 3.70 0+0 5.8 5+0 6.40	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0	54
3.00+0 1.00+0 2.50+0 1.00+0 1.02+0	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2	7.41-1 9.95-1 1.11+0 1.11+0	3.50+0 1.50+0 3.00+0 4.50+0 1.23+0	2.60-1 1.83-2 2.93-1 1.38+0 8.00-3	5.23-1 1.01+0 1.03+0 1.15+0 1.08+0	2.5 4.0 2.0 3.7	0+0 3.70 0+0 5.8 5+0 6.40 4+0 1.70	0-1 4.64-1 1-2 9.68-1	54
. 00+0 . 00+0 . 50+0 . 00+0 . 02+0	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2	7.41-1 9.95-1 1.11+0 1.11+0	3.50+0 1.50+0 3.00+0 4.50+0 1.23+0	2.60-1 1.83-2 2.93-1 1.38+0 8.00-3 4.90-2	5.23-1 1.01+0 1.03+0 1.15+0	2.5 4.0 2.0 3.7	0+0 3.70 0+0 5.8 5+0 6.40 4+0 1.70	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0 0-2 1.13+0	54
00+0 00+0 50+0 00+0 66+0	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2 1.10-1	7.41-1 9.95-1 1.11+0 1.11+0 1.07+0	3.50+0 1.50+0 3.00+0 4.50+0 1.23+0 1.87+0 2.49+0	2.60-1 1.83-2 2.93-1 1.38+0 8.00-3 4.90-2 1.60-1	5.23-1 1.01+0 1.03+0 1.15+0 1.08+0 1.07+0 1.13+0	2.5 4.0 2.0 3.7 1.4 2.0	0+0 3.70 0+0 5.83 5+0 6.40 4+0 1.70 8+0 7.80	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0 0-2 1.13+0 0-2 1.11+0	54 87
00+0 00+0 50+0 02+0 66+0 29+0	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2 1.10-1 3.30-1	7.41-1 9.95-1 1.11+0 1.11+0 1.07+0 1.16+0	3.50+0 1.50+0 3.00+0 4.50+0 1.23+0 1.87+0 2.49+0 4.00+0	2.60-1 1.83-2 2.93-1 1.38+0 8.00-3 4.90-2 1.60-1 9.20-1	5.23-1 1.01+0 1.03+0 1.15+0 1.08+0 1.07+0 1.13+0	2.5 4.0 2.0 3.7 1.4 2.0	0+0 3.70 0+0 5.83 5+0 6.40 4+0 1.70 8+0 7.80	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0 0-2 1.13+0 0-2 1.11+0 0+0 1.05+0	54 87
00+0 00+0 50+0 00+0 66+0 29+0	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2 1.10-1 3.30-1 3.40+0	7.41-1 9.95-1 1.11+0 1.11+0 1.07+0 1.16+0 1.10+0	3.50+0 3.00+0 4.50+0 1.23+0 1.87+0 2.49+0 4.00+0 8.00+0	2.60-1 1.83-2 2.93-1 1.38+0 8.00-3 4.90-2 1.60-1 9.20-1	5.23-1 1.01+0 1.03+0 1.15+0 1.08+0 1.07+0 1.13+0	2.5 4.0 2.0 3.7 1.4 2.0	0+0 3.70 0+0 5.83 5+0 6.40 4+0 1.70 8+0 7.80	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0 0-2 1.13+0 0-2 1.11+0	54 87
00+0 00+0 50+0 00+0 02+0 66+0 29+0	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2 1.10-1 3.30-1	7.41-1 9.95-1 1.11+0 1.11+0 1.07+0 1.16+0 1.10+0	3.50+0 3.00+0 4.50+0 1.23+0 1.87+0 2.49+0 4.00+0 8.00+0	2.60-1 1.83-2 2.93-1 1.38+0 8.00-3 4.90-2 1.60-1 9.20-1	5.23-1 1.01+0 1.03+0 1.15+0 1.08+0 1.07+0 1.13+0	2.5 4.0 2.0 3.7 1.4 2.0	0+0 3.70 0+0 5.83 5+0 6.40 4+0 1.70 8+0 7.80	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0 0-2 1.13+0 0-2 1.11+0 0+0 1.05+0	54 87
00+0 00+0 50+0 00+0 02+0 66+0 29+0 00+0 20+1	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2 1.10-1 3.30-1 3.40+0	7.41-1 9.95-1 1.11+0 1.11+0 1.07+0 1.16+0 1.10+0 9.66-1	3.50+0 3.00+0 4.50+0 1.23+0 1.87+0 2.49+0 4.00+0	2.60-1 1.83-2 2.93-1 1.38+0 8.00-3 4.90-2 1.60-1 9.20-1 7.60+0	5.23-1 1.01+0 1.03+0 1.15+0 1.08+0 1.07+0 1.13+0	2.5 4.0 2.0 3.7 1.4 2.0 5.0 1.0	0+0 3.70 0+0 5.85 5+0 6.40 4+0 1.70 8+0 7.80 0+0 1.80 0+1 1.50	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0 0-2 1.13+0 0-2 1.11+0 0+0 1.05+0	54 87 95
00+0 00+0 50+0 02+0 66+0 29+0 00+0 20+1	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2 1.10-1 3.30-1 3.40+0 2.30+1 2.56-3 9.18-3	7.41-1 9.95-1 1.11+0 1.11+0 1.07+0 1.16+0 1.10+0 9.66-1 9.49-1	3.50+0 1.50+0 3.00+0 4.50+0 1.23+0 1.87+0 2.49+0 4.00+0 8.00+0	2.60-1 1.83-2 2.93-1 1.38+0 8.00-3 4.90-2 1.60-1 9.20-1 7.60+0 3.52-3 1.19-2	5.23-1 1.01+0 1.03+0 1.15+0 1.08+0 1.07+0 1.13+0 1.15+0 1.00+0	2.5 4.0 2.0 3.7 1.4 2.0 5.0 1.0	0+0 3.70 0+0 5.8 5+0 6.40 4+0 1.70 8+0 7.80 0+0 1.80 0+0 1.50	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0 0-2 1.13+0 0-2 1.11+0 0+0 1.05+0 0+1 1.04+0 1-3 8.63-1 1-2 8.91-1	54 87 95
.00+0 .00+0 .50+0 .00+0 .02+0 .66+0 .29+0 .00+0 .20+1	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2 1.10-1 3.30-1 3.40+0 2.30+1 2.56-3	7.41-1 9.95-1 1.11+0 1.11+0 1.07+0 1.16+0 1.10+0 9.66-1 9.49-1	3.50+0 1.50+0 3.00+0 4.50+0 1.23+0 1.87+0 2.49+0 4.00+0 8.00+0	2.60-1 1.83-2 2.93-1 1.38+0 8.00-3 4.90-2 1.60-1 9.20-1 7.60+0 3.52-3 1.19-2	5.23-1 1.01+0 1.03+0 1.15+0 1.08+0 1.07+0 1.13+0 1.15+0 1.00+0	2.5 4.0 2.0 3.7 1.4 2.0 5.0 1.0	0+0 3.70 0+0 5.8 5+0 6.40 4+0 1.70 8+0 7.80 0+0 1.80 0+0 1.50	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0 0-2 1.13+0 0-2 1.11+0 0+0 1.05+0 0+1 1.04+0	54 87 95
00+0 00+0 50+0 00+0 66+0 29+0 00+0 20+1 00+0 30+0	1.40-1 2.00-3 1.43-1 8.86-1 3.30-3 3.10-2 1.10-1 3.30-1 3.40+0 2.30+1 2.56-3 9.18-3 2.67-2	7.41-1 9.95-1 1.11+0 1.11+0 1.07+0 1.16+0 1.10+0 9.66-1 9.49-1 9.63-1 1.12+0	3.50+0 1.50+0 3.00+0 4.50+0 1.23+0 1.87+0 2.49+0 4.00+0 8.00+0 1.10+0 1.40+0 1.70+0	2.60-1 1.83-2 2.93-1 1.38+0 1.38+0 8.00-3 4.90-2 1.60-1 9.20-1 7.60+0 3.52-3 1.19-2 3.46-2	5.23-1 1.01+0 1.03+0 1.15+0 1.08+0 1.07+0 1.13+0 1.15+0 1.00+0 8.09-1 8.93-1 1.12+0	2.5 4.0 2.0 3.7 1.4 2.0 5.0 1.0	0+0 3.70 0+0 5.8 5+0 6.40 4+0 1.70 8+0 7.80 0+0 1.80 0+1 1.50 0+0 5.7 0+0 3.83	0-1 4.64-1 1-2 9.68-1 0-1 1.01+0 0-2 1.13+0 0-2 1.11+0 0+0 1.05+0 0+1 1.04+0 1-3 8.63-1 1-2 8.91-1	43 54 87 95 134

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E _i	σ ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
									
45	Rhodium		Fluoresc	ence vi	eld = 0.8	108			
				,					
5.20-	+1 2.10+2	9.01-1							8
	+1 9.48+1				2 8.86-1		1 2.02+2		24
6.00-	+1 2.69+2	9.91-1	7.004	-1 3.29+2	2 1.05+0	8.00+	1 3.78+2	1.09+0	
	+0 1.20-3			0 3.30-3			0 6.60-3		87
	+0 1.30-2 +0 4.50-2			+0 2.20-2 +0 7.40-2			0 3.70-2		
2.23	+0 4.30-2	0.93-1	2.497	7.40-2	2 1.00+0	2.70 +	0 9.90-2	1.04+0	
46	Palladiu	m	Fluores	ence yie	=1d = 0.8	32			
3.00-	+1 6.26+1	7.03-1	4.00	1.02+2	2 7.13-1	5.00+	1 1.53+2	7.87-1	24
6.00-	+1 2.03+2	8.47-1	7.00+	1 2.56+2	2 9.21-1	8.00+	1 2.89+2	9.31-1	
1.50-	+0 3.98-3	5.98-1	2.02	HO 1.99-1	2 8.25-1	2.50+	0 4.99-2	8 79-1	148
	+0 1.04-1				1 9.33-1		0 1.91-1		1.0
3.60	+0 2.11-1	9.47-1	•						
47	Silver		Fluores	cence yi	eld = 0.8	331			
2.70-	+1 5.60+1	9.05-1	3.40	1 8.40+	1 8.87-1	3.90+	1 1.01+2	8.49-1	8
4.40-	+1 1.11+2	7.78-1	5.20	1.35+2	2 7.57-1				
3.00-	+1 6.52+1	8.60-1	4.00	+1 1.02+	2 8.25-1	5.00+	1 1.41+2	8.30-1	24
	+1 2.16+2				2 1.01+0		1 2.96+2		
3.00	+0 1.00-1	1.09+0	4.00	+0 3.10-	1 1.18+0	5.00+	0 7.70-1	1.35+0	38
	+0 1.30+0				0 1.27+0		0 3.30+0		30
	+0 4.60+0			1 6.30+0	0 1.21+0	1.10+	1 7.80+0	1.14+0	
1.20	+1 9.90+0	1.13+0							
	+0 2.01-3				3 4.98-1		0 2.82-2		54
	+0 6.46-2 +0 2.54-1			FO 1.20-	1 7.41-1 1 7.06-1	4.00+	0 1.66-1	6.33-1	
4.30	.0 2.54 1	0.40 1	3.00	10 4.03	1 7.00 1				
5.20	+0 9.10-1	1.39+0	1.65	1 2.14+	1 1.05+0	2.70+	1 5.11+1	8.26-1	83
8.00	-1 2.10-4	1.22+0			4 8.08-1		0 1.50-3	8.42-1	87
	+0 3.60-3				8.98-1		0 1.20-2		
2.00-	+0 2.00-2	1.09+0	2.20	FO 2.60-2	2 9.53-1	2.40+	0 4.30-2	1.11+0	
	+0 1.00-1				1 1.03+0		0 5.90-1	1.03+0	95
	+0 1.10+0			+0 2.60+0	0 9.82-1	1.00+	1 5.10+0	9.80-1	
1.20	+1 8.30+0	7.43*1							
	+0 6.13-4				3 5.61-1	1.41+	0 2.21-3	5.61-1	99
1.50-	+0 3.14-3	6.00-1	1.71	+0 6.25 - 3	3 6.63-1				
1.10-	+1 7.72+0	1.13+0	1.60	+1 1.89+	1 9.99-1	2.10+	1 3.46+1	9.54-1	109
2.70	+1 5.97+1	9.65-1							

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper} _	σ ^{Exper}	E,	σ ^{Exper}	σ^{Exper}	E_1	σ ^{Exper}	σ ^{Exper} .	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
00-1	/ 56 <u>-</u> 6	2.21-1	8 00-1	1 10-4	6.39-1	. 1 00	- 0 5 10.	-4 7.63-1	126
		8.70-1			9.66-1			-3 9.59 - 1	120
	1.27-2				1.09+0			-2 1.15+0	
	4.63-2		2.0010	2.00 2	1.05.0	2.20	10 3.14	2 1.1510	
. 20+0	6.64-4	3.73-1	1.30+0	1.43-3	5.37-1	1.40	+0 2.28	-3 5.99-1	134
.50+0	2.97-3	5.68-1	1.60+0	4.16-3	5.93-1	1.70	+0 5.04	-3 5.49-1	
. 80+0	6.50-3	5.51-1							
		5.14-1			9.84-1			-2 8.56-1	148
		8.94-1			9.70-1	3.50	+0 1.43	-1 8.83-1	
. 60+0	1.65-1	9.20-1	3.70+0	1.86-1	9.39-1				
8 C	admium		Fluoresce	nce yie	1d = 0.8	43			
L.30+0	6.22-4	2.99-1	1.40+0	1.26-3	4.20-1	1.42	+0 1.26	-3 3.93-1	111
		3.99-1			4.31-1			-3 4.53-1	
		4.33-1			4.04-1			-3 4.32-1	
		4.40-1			5.21-1			-3 5.59-1	
.80+0	4.98-3	5.30-1	1.90+0		5.68-1		+0 9.40	-3 6.37-1	
<mark>2. 10+0</mark>	1.20-2	6.63-1	2.20+0	1.38-2	6.30-1	2.30	+0 1.59	-2 6.06-1	
		6.36-1			6.41-1		+0 3.69	-2 6.49-1	
2.40+0	2.45-2	7.87-1	2.60+0	3.32-2	7.77-1	2.80	+0 3.70	-2 6.50-1	138
9 I	ndium		Fluoresce	nce yie	1d = 0.8	53			
. 20+1	5.40+0	9.00-1	2.00+1	2.02+1	8.84-1				59
5.00+0	5.10-1	7.27-1	9.00+0	1.86+0	7.25-1	1.20)+1 4.20·	+0 7.00-1	94
	8.97+0			1.26+1					
60 T	'in		Fluoresce	nce yie	ld = 0.8	62			
. 20+1	8.90+1	7.44-1							8
3.00+1	3.89+1	8.23-1	4.00+1	6.63+1	8.30-1	5.00)+1 9.65	+1 8.52-1	24
								+2 9.81-1	
2.00+1	2.00+1	1.04+0							42
				7 0511	0 02 1	F 0/	\11 1 AF	12 0 27 1	49
								+2 9.27-1 +2 9.61-1	49
,.∪∪∓1 1 00±1	. 1. <i>ጋሬ</i> ፕሬ የ በየቷየ	2.13 ⁻ 1	1.00+1	. 1./UTZ) 7 1017	9.00-1 Q 20-1	0.00	, T T. 03.	+2 9.61-1	
1.50+0	5.21-4	1.99-1	2.00+0	3.41-3	3.57-1	2.50	0+0 9.88	-3 4.12-1	54
. UU+0	2.50-2	5.12-1	3.50+0	4.9/-2	5./1-1	4.00	J+U /.15	-2 5.06-1	
≀. ⊃U+0	1.12-1	5.21-1	5.00+0	1.62-1	5.22-1				
	3.70-1	1.04+0	1.65+1	1.51+1	1.27+0	2.70)+1 3.81	+1 1.00+0	83
. 20+0									
L.00+0	1.70-4	5.71-1	1.20+0	5.30-4	6.30-1	1.40	+0 1.50	-3 8.04-1	87
1.00+0 1.60+0	2.80-3	7.89-1	1.20+0 1.80+0 2.40+0	4.60-3	7.63-1	2.00)+0 1.50)+0 8.50	-3 8.04-1 -3 8.90-1	87

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E_{i}	σ^{Exper}	$\sigma^{ m Exper}$	$E_{\mathfrak{i}}$	σ^{Exper}	σ ^{Exper}	$E_{\scriptscriptstyle \parallel}$	σ^{Exper}	$\sigma^{ m Exper}$	
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
2 0010		0 02 1	6 0016	1 50 1	1 0610	F 001/	. 2 20 1	1 0210	0.5
	4.80-2 5.80-1) 1.50-1) 1.50+0			3.20-1 1 2.80+0		95
	4.60+0		0.00.	7 1.50.0	1.03.0	1.001	2.00.0	3.02 1	
	1.11-4			3.81-4			6.94-4		111
	8.84-4 1.37-3			9.36-4 1.39-3			9.97-4 1.92-3		
	3.05-3			3.41-3) 4.52-3		
	5.30-3			6.56-3			7.59-3		
	1.16-2			1.50-2					
	2.68+0			1.16+1			1.37+1		128
	1.59+1 1.98+1			l 1.72+1 l 2.09+1			1 1.80+1 1 2.45+1		
	2.65+1			L 2.09+1 L 2.90+1			1 2.45+1 1 2.35+2		
	2.57+2			2 2.69+2			2 2.62+2		
	3.01+2		1.40+	2 3.04+2	1.07+0		2 3.08+2		
2.40+0	1.11-2	5.45-1	2.60+0	1.59-2	5.68-1	2.80+0	2.16-2	5.77-1	138
2.50+0	1.90-2	7.93-1	3.00+	3.90-2	7.99-1	3.50+0	7.20-2	8.27-1	148
51 A	ntimony		Fluoresco	ence yie	1d = 0.87	•			
	4.70-4			1.30-3			2.50-3		87
	4.60-3		2.00+	7.30-3	9.46-1	2.20+	0 1.20-2	1.04+0	
2.40+0	1.70-2	1.03+0							
	2.03-5			0 1.38-4			0 4.46-4		126
	1.18-3			2.50-3			0 4.85-3		
2.00+0	7.59-3	9.84-1	2.20+	0 1.17-2	1.01+0	2.40+	0 1.70-2	1.03+0	
52 T	elluriu	n	Fluoresc	ence yie	1d = 0.87	7			
3.00+1	3.00+1	8.70-1	4.00+	1 5.43+1	9.04-1	5.00+	1 7.90+1	9.16-1	49
6.00+1	1.02+2	9.14-1	7.00+	1 1.40+2	1.04+0	8.00+	1 1.56+2	1.00+0	
				0 1.02-2	7.55-1	2.60+	0 1.45-2	7.77-1	138
2.80+0	1.71-2	6.83-1							
53 I	odine		Fluoresco	ence yie	1d = 0.88	34			
1.00+0	6.60-5	4.95-1	1.20+	2.50-4	6.18-1	1.40+			87
1.60+0 2.20+0	6.50-3	9.2/-1 8.45-1	1.80+0 2.40+0	0 2.60-3 0 1.00-2	8.18-1 9.04-1	2.00+0	0 4.30-3	8.44-1	
2.40+0	1.11-2	1.00+0	2.60+	0 1.48-2	9.65-1				138
55 C	esium		Fluoresc	ence vie	1d = 0.89	17			
				-			1 7 0%.10	8.32-1	109
	a nu=1	, ,,,-,							1117

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	$\sigma^{ m Exper}$	E_{i}	σ^{Exper}	$\sigma^{ m Exper}$	E_1	$\sigma^{ m Exper}$	$\sigma^{ m Exper}$	
MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	- Ref
56	Barium		Fluores	cence y	ield = 0.9	02			
1.40	+0 2.50	-4 5.19-1	1.60	+0 5.00	-4 5.14-1	1.80	+0 1.00-	3 5.76-1	87
2.00	+0 1.80	-3 6.40-1	2.20	+0 3.00	-3 6.99-1		+0 4.90-		
2.40	+0 4.23	-3 6.79-1	2.60	+0 5.71	-3 6.57-1				138
58	Cerium		Fluores	cence y	ield = 0.9	12			
5.20	+1 5.00	+1 1.20+0							8
		-4 3.52-1		+0 3.10	-4 4.79-1	1.80	+0 5.90-	4 5.02-1	87
2.00	+0 1.20	-3 6.22-1	2.20	+0 2.00	-3 6.74-1	2.40	+0 3.00-	3 6.92-1	
59	Praseo	dymium	Fluores	cence y	ield = 0.9	17			
3.00	+0 5.60	-3 6.12-1			-2 7.65-1	5.00	+0 4.80-	2 7.87-1	95
		-2 8.05-1 -1 7.76-1		+0 2.30	-1 7.77-1	1.00	+1 4.90-	1 8.18-1	
1.20									
60	Neodym	ium	Fluores	cence y	ield = 0.9	21			
2.00	+1 2.60	+0 6.84-1							42
3.00	+1 6.50	+0 6.24-1	4.00	+1 1.58	+1 8.09-1	5.00	+1 2.89+	1 9.61-1	49
6.00	+1 3.37	+1 8.23-1	7.00	+1 5.01	+1 9.65-1	8.00	+1 6.61+	1 1.06+0	
1.20	+1 8.00	-1 8.97-1	2.00	+1 3.40	+0 8.95-1				59
62	Samari	um	Fluores	cence y	ield = 0.9	29			
2.00	+0 4.40	-4 4.65-1	2.50	+0 1.30	-3 4.96-1	3.00	+0 2.10-	3 3.73-1	43
3.50	+0 3.60	-3 3.48-1	4.00	+0 5.30	-3 3.10-1				
3.00	+0 4.30	-3 7.64-1	4.00	+0 1.50	-2 8.77-1	5.00	+0 3.40-	2 8.90-1	95
		-2 8.93-1		+0 1.60	-1 8.63-1	1.00	+1 3.20-	1 8.51-1	
1.20	+1 5.10	-1 7.77-1							
64	Gadoli	nium	Fluores	cence y	ield = 0.9	35			
3.00	+1 4.80	+0 8.03-1	4.00	+1 8.80	+0 7.66-1	5.00	+1 1.76+	1 9.70-1	49
6.00	+1 2.72	+1 1.07+0	7.00	+1 3.28	+1 1.00+0	8.00	+1 3.98+	1 9.95-1	
1.20	+0 1.30	-5 4.23-1	1.40	+0 4.40	-5 4.94-1	1.60	+0 1.00-	4 4.96-1	87
		-4 4.88-1		+0 3.10	-4 4.62-1			4 4.43-1	
1.33	+1 7.47	-1 1.12+0	1.52	2+1 1.12	+0 1.14+0	1.83	8+1 1.83+	0 1.10+0	140
		+0 1.09+0			+0 1.20+0			_ · · ·	•
3.40	+0 6 54	-3 8.66-1	<u>4</u> 5/	₊ +∩ 2 ∩2	-2 1.00+0	5 40	ነ+በ 4 ዓጓ-	2 1.33+0	141
		-2 1.05+0			-1 1.07+0			1 1.10+0	1-71
		-1 1.01+0			-1 1.07+0			0 1.06+0	

 $T_{ABLE} \ 5. \ \textit{K-} shell \ x-ray \ production \ by \ helium-4 \ in \ target \ elements \ from \ beryllium \ to \ uranium^{a,b}-Continued$

	σ^{Exper}	σ^{Exper}	<i>E</i> ₁	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	Ref.
									
67	Holmium		Fluoresce	ence yie	1d = 0.944	+			
4.00+	1 8.58+0	1.10+0	5.00+1	l 1.55+1	1.24+0	6.00+1	1.77+1	9.95-1	90
8.00+	1 2.94+1	1.02+0	1.10+2	2 4.25+1	9.53-1				
3 00+	0 1.80-3	6 75-1	ለ በበ ∔(8.60-3	1 0/4-0	5 00±0	2.00-2	1 07±0	95
	0 1.00-3 0 3.50 - 2			7.70-2			1.70-1		93
	1 2.70-1								
0 001	0 1 711	1 2010	1 5511	1 0 00 1	1 1010	1 (5:1	0 50 1	1 1710	100
	0 1.71-1 1 1.15+0			l 8.02-1 l 1.30+0	_		9.52 - 1		128
	1 1.79+0			l 1.98+0			2.24+0		
69	Thulium		Fluoresce	ence yie.	1d = 0.949	1			
3.00+	1 1.90+0	6.14-1	4.00+	1 4.20+0	6.89-1	5.00+1	7.50+0	7.60-1	49
	1 1.18+1			1.72+1			2.00+1		
1.20+	1 3.00-1	1.22+0	2.00+	L 1.09+0	1.02+0				59
4.00+	1 6.18+0	1.01+0	5.00+1	L 9.94+0	1.01+0	6.00+1	1.43+1	1.01+0	90
8.00+	1 2.33+1	1.00+0	1.10+2	2 3.53+1	9.65-1				
a uu+	0 1.31-1	1 20±0	1 5541	1 5.83-1	1 12±0	1 6511	6.89-1	1 1040	128
	1 7.75-1			1 9.41-1			1.12+0		120
	1 1.29+0			1.54+0			1.68+0		
	T 1 1 1 1		77.1		11 0 0 0 0 0	_			
71	Lutetium		Fluoresce	ence yie	1d = 0.953	•			
4.00+	1 5.04+0	1.05+0	5.00+3	l 8.71+0	1.12+0	6.00+1	1.24+1	1.10+0	90
8.00+	1 2.00+1	1.06+0	1.10+2	2 3.17+1	1.05+0				
72	Hafnium		Fluoresce	are vie	1d = 0.955	:			
	114 L 11 L WIII		11401050	once yre	14 0.755	,			
	0 1.10-3			4.30-3			1.00-2		95
	0 1.90-2			4.70-2	9.80-1	1.00+1	9.50-2	9.84-1	
1.20+	1 1.60-1	9.52-1							
73	Tantalum		Fluoresce	ence yie	1d = 0.957	,			
E 201	1 5.60+0	0 2/ 1							•
3.20+	1 3.6070	0.34-1							8
	1 1.60+0			1 3.00+0	7.94-1				49
6.00+	1 8.50+0	9.45-1	7.00+	1.38+1	1.15+0	8.00+1	1.40+1	9.19-1	•
ፈ ሰበ+	1 3.87+0	1 02+0	6 UUT:	8 7640	9.74-1	ጸ በበቷ1	1 51±1	0 02-1	90
	2 2.45+1		U. 00T	. 0./070	J./4-1	0.00+1	. 1.3171	J. J. T. T.	30
	0 6.70-4			3.30-3	8.59-1	5.00+0	8.50-3		95
	0 1.60-2 1 1.40-1			4.00-2	9.39-1	1.00+1	8.20-2	9.58-1	
1.20+	1 1.40-1	J.4U-1							

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

E_{i}	σ ^{Exper}	σ ^{Exper}	E ₁	σ ^{Exper}	σ ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	σ ^{ECPSSR}	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ ^{ECPSSR}	Ref
4 T	ungsten		Fluoresce	nce yie	ld = 0.9	58			
5.20+1	5.40+0	9.00-1							8
	2 0010	1 1610	F 0011	7 (010	1 2/10	6 00	.1 0 10	10 1 1010	00
	3.82+0 1.49+1				1.34+0 1.12+0	6.00	+1 9.10-	+0 1.13+0	90
	11 17 1	1.03.0	1.10.2	2.31.1	1112.0				
	1.38-3				7.48-1			-3 8.79-1	141
	2.01-2 1.13-1				1.06+0	9.54	+0 7.13·	-2 1.08+0	
1.10+1	1.13-1	1.11+0	1.30+1	1.02-1	1.08+0				
2.20+0	9.15-5	4.08-1	2.40+0	1.61-4	4.52-1	2.60	+0 2.54	-4 4.80-1	147
	4.25-4				4.96-1			-4 4.96-1	
3.60+0	1.07-3	4.77-1	3.80+0	1.36-3	4.88-1	4.00	+0 1.67	-3 4.90-1	
75 R	henium		Fluoresce	nce yie	ld = 0.9	59			
4.00+0	3.00-3	9.92-1	5.00+0	7.10-3	1.02+0	6.00	+0 1.30	-2 9.90-1	95
	3.40-2				9.59-1			-1 8.93-1	, ,
78 P	latinum		Fluoresce	nce yie	ld = 0.9	63			
				-					
5.20+1	3.10+0	8.06-1							8
4.00+1	1.97+0	9.25-1	6.00+1	5.45+0	1.05+0	8.00	+1 9.24	+0 1.02+0	90
1.10+2	1.55+1	1.01+0							
3 0010	2 60-6	6 10-1	/ 0010	1 60-2	6.53-1	F 00	10 2 00	2 7 00 1	95
	2.60-4 8.70-3				1.03+0			-3 7.80-1 -2 9.66-1	93
	8.20-2			2.50 2	1.03.0	1.00	.1 4.70	2 3.00 1	
79 G	old		Fluoresce	nce yie	1d = 0.9	64			
5.20+1	2.80+0	8.11-1							8
5 OO+1	3.10+0	9 77-1	6 00+1	5 30+0	1.13+0	7 00	+1 7 60	+0 1.19+0	49
	9.80+0		0.0013	. 5.5010	1.13.0	7.00	.1 7.00	.0 1.15.0	7.
			5.00+1			6.00	+1 5.24	+0 1.12+0	90
8.00+1	8.50+0	1.03+0	1.10+2	1.44+1	1.03+0				
4.00+0	1.30-3	6.78-1	5.00+0	3.50-3	7.79-1	6.00	+0 7.30	-3 8.56-1	95
			1.00+1					-2 8.87-1	
		4 40.0	4 / 2 1 4		4 0/10	4 75		4 4 04 10	101
	3.73-2 2.92-1			2.35-1	1.24+0	1.75		-1 1.21+0 -1 1.24+0	128
	. 2.92-1 . 4.04-1				1.13+0			-1 1.24+0 -1 1.22+0	
	1.05+1				9.87-1			+1 9.54-1	
1.20+2	1.40+1	8.80-1	1.30+2	1.83+1	1.03+0	1.40	+2 1.93	+1 9.85-1	
	2.06+1	9.29-1							
1.55+2									
	7.11-5	2.66-1	2 8440	1 29-4	3.08-1	3 በ/	+0 1 96	-4 3 36-1	147
2.60+0	7.11-5 3.08-4		2 ,84+0 3 . 60+0	1.29-4 5.62-4	3.08-1 4.53-1	3.04 3.80	+0 1.96 +0 7.63	-4 3.36-1 -4 4.90-1	147

TABLE 5. K-shell x-ray production by helium-4 in target elements from beryllium to uranium^{a,b}—Continued

<i>E</i> ,	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ^{Exper}		
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$		Ref.
99 T.	L A		Fluorescer		14 - 0 067	,				
82 Le	ead		riuorescei	ice yre.	1u - 0.907					
5.20+1	1.90+0	7.52-1							8	
1.20+1	5.70-2	1.03+0	2.00+1	2.25-1	9.59-1				59	
	1.42+0		6.00+1	3.26+0	9.49-1	8.00+1	5.47+0	8.98-1	90	
1.10+2	9.68+0	9.16-1								
4.00+0	8.80-4	6.37-1	5.00+0	2.30-3	6.97-1	6.00+0	4.80-3	7.61-1	95	
8.00+0	1.40-2	8.63-1	1.00+1	3.00-2	9.28-1	1.20+1	5.00-2	9.00-1		
9.00+0	2.50-2	1.06+0	1.75+1	1.87-1	1.15+0	1.85+1	2.06-1	1.09+0	128	
		1.11+0	2.05+1	2.88-1	1.15+0	2.15+1	3.16-1	1.11+0		
2.25+1	3.49-1	1.08+0	5.00+1	2.36+0	1.02+0	6.00+1	3.26+0	9.49-1		
		9.69-1	8.00+1	5.91+0	9.70-1	9.00+1	7.24+0	9.59-1		
1.00+2	9.78+0	1.08+0			1.05+0		1.19+1			
	1.46+1				1.07+0		1.88+1			
83 B	ismuth		Fluoresce	nce yie	1d = 0.968	3				
4.00+1	1.32+0	1.06+0	6.00+1	3.04+0	9.80-1	8.00+1	4.87+0	8.81-1	90	
1.10+2	8.73+0	9.05-1								
4.00+0	7.60-4	6.12-1	5.00+0	2.10-3	7.04-1	6.00+0	4.60-3	8.03-1	95	
		9.49-1	1.00+1	2.80-2	9.54-1	1.20+1	4.70-2	9.33-1		
1.75+1	1.30-1	8.84-1	1.85+1	1.74-1	1.02+0	1.95+1	2.59-1	1.31+0	128	
_		1.30+0			1.15+0			1.10+0		
90 T	horium		Fluoresce	nce yie	1d = 0.971	l				
				0.00.4	F 0F 1		0 10 0	< 0.7 1		
		5.39-1			5.85-1			6.97-1	95	
8.00+0	6.70-3	8.47-1	1.00+1	1.60-2	1.02+0	1.20+1	2.30-2	9.32-1		
2.60+0	3.00-5	5.29-1							124	
4.45+0	4.85-4	5.12-1	5.45+0	1.46-3	6.89-1	6.19+0	2.29-3	6.81-1	141	
6.32+0	2.97-3	8.21-1	7.49+0	5.47-3	8.53-1	7.81+0	6.04-3	8.24-1		
		1.05+0			9.31-1	9.78+0	1.82-2	1.24+0		
		1.21+0			1.22+0			1.09+0		
		1.16+0			1.11+0			_,_,		
92 U	ranium		Fluoresce	nce yie	1d = 0.972	2				
% 00±0	2 20-4	/ 58-1	5.00+0	6 90-4	5 46-1	6 00+0	1 80-2	7 11-1	95	
			1.00+0						93	
а										

Cross sections and their ratios are printed in a compressed power of 10 -1 notation, e.g. 9.66-1 means 9.66*10 .

The ratios shown in **bold** print differ by more than a factor of 2 from the averaged ratios and were -- as described in the text -- rejected.

This rejection criterion was applied only to the Z2 > 9 data.

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions.

Z1 =		_	:*	**	-		= **		_	רילרי	**	**	·*	**	de	**	·*	たが	\	オマ	\ *	·**	trate:	**	ראר ז	とか	·**	ctc	***	cic	**	· 2°	**	たが	לרארו	とが	**	·**	\				ns ***
Ref.			Z	2		->		4		5		6		7		8		9	1	0	1	1	1:	2	13	3	14	í	15	5	16	•	17	1	.8	1	9	20)	21	2	2	23
7 9																								 7																			• •
10	•	•		•	• • •	•	• •	•	• •	•	• •				-		-			-		-). 1.		•		•		•	• •		• •	•	• •	• •	•	• •	• •	1.	• •
11																									22	2.																	
12												-			-		-					•		4																			
13 16																								-	7	1.	٠.	• •	٠.			•	- ·		•							٠.	
17	•	•	•	•				•	•				•		•		•	• •		•		•		• •	1:	 3.	•	•	• •	•	• •		• •	• •	•		• •	• •	• •	• •	• •	• •	• • •
18															1	7.																											
20																																											
22 23					• • •																																						
25					• • •								•	• •	•	• •	•	• •		•		• •		• •		 4.	• •	•		•	• •	•	• •	• •		• •	• •	• •	•	• •	• •		• •
26																																											
29	-		•	•				•	•	•	• •	•	•	•																													
33 34	-	-	•	•	• • •			-						•	1	3.	•	• •	• •	•	• •	• •	• •	• •	•	• •	• •	• •		•	٠.	•	٠.	• •	•	• •	• •	• •	•	• •	• •	• •	• • •
35																																											• • •
36																																											3
37	-		-	-				-																																			
38 40					• • •																											-			-								• •
40					• • •			-									-			-									•			•			•	•		•					•••
45																																											• •
46				•							1	.3	1	3.						7					•										8								
47																					-			-								-						•				3	1
48 50										-		-								-					-						-	-											
51																																											• • •
55		•																				•																				9.	
57	-			-	• •			-	-						-	-				-		-							-		-												
58 64	•	-		•	• • •		٠.	•	- '		• •	•		•				•																									• •
65					• • •															-														-		• •	• •	•	•	то	• •	• •	• •
66																															2	١.			_			-		4		•	• • •
																																											20
											-									-										-		-							-				• • •
	-	-			• • •			-	-	-					-			-		-					-													•				9	• •
																																										3	12
74																																			1								
																																											• • •
76		•																																									1
77																																									_		
77 79																																									2	6	
77 79 81 82		•	•		• • •		• •		•			9	•		•		•	•	• •		• •	•	• •		•		•					•			•							6.	

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions.

Continued.

Protons

Cont						_==			=		==:			===						==:							otons
Ref.	Z	2 -	>	4		5	6	7	8	3	9	10	11	1	12	13	14	15	10	6	17	18	19	20	2	1 2	22 23
84																											3
85							9.																				
86																											. 14
88																1.											
92				7																							
																1											1
																6				_		•		•		•	
																•	• • •	• • •	••	• •	• • •	• • •	• • •	3	 I 3	1 4	31 31
101		• • •	•••	• • •	• •	• •	• •	• • •	• • •	• •	• • •	• • •		· · ·	Ω.	16	٠	• • •	• •	• •	• • •	• •	• • •	J.	LJ	Ι.	7
																											,
																-											l3 13
																									-		13 13 10
																										-	
										-	_																
	• • • •																		-							-	9
																-											
																											11
119				12																							
121																										8.	
122																		7	7	7	7.		7				
123																		11	1	1	11.		12	1:	2		
132																											14
137																									. 1	4	14 7
																											5
149																3											1
156																											
							20	30	3	1 :	 32	 33	34		 35	36	 37	78		· ·	 4n	 41	 42	٠.	 Z &		 45 46
					_	_				_			_	-					-	-						•	
1																							1				
4						•																					
•						-																					
				• • •																							
-	• • • •		_			•																					
•	• • • •	• • •				•																					
10	• • • •	• •																									
27		٠.						10)																		
30			1																								1
36	3	3	3	3	}	3	2																				
38			10	11	. 					•	11																
52	• • •	тą	12	• • •	1	.S	72	15	• • •	• •	• •		• • •	• • •	• • •	• • •		• • •	. 1	э.	• •		12	• •		• •	

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions.

Continued.

Protons

Cont	. 111	ue	·u.										-										110	COILS
																							44 4	
53				. 1	.6	16		16	16	16	16	16												
55				. 1	0	10	11	9.																
57					-																			
59								2										2						
65															1									
66					4			4																
68															7									
69	1	8	20) 2	20	19	17	19																
72																5								
73				. :																				
74		•						1																
76		1			1		1	1																
77																								
79	•	-																						
80	•	_		-	_																			
84	_																							
86		-		•	_	_	_																	
87																								
89						• • •																	• • • •	
94	• •																							
95																								
97							-																	
98																							• • • •	
99																							• • • •	
103	-	-					• • •																• • • •	
																							• • • •	
	•	• •	• •	•	10		• • •	10	• • •	• • •	• • •	• • •	10		• • •	• • •	• • •	10			• • •	• • •	• • • •	
106																								
111	•												,			6	12	·	1.	L				
113	•			8	8		11	. 11					10)					2	2				
114		1					1	. 1	. 1				1	L						ι				
115						22	22	22	22		21		22	2										
118					11			11											9	9				
120							21																	6
121					9																			
122																								
125																								
126																								
130	•		• •		• •																			
132	•		-																					
135																								
137	-																							
																								23
140																				, .	, .	T		/

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions.

Continued.

Protons

Cont	inue	ed.																			Ρ.	rot	ons
Ref.	24	25	26	27	28	20	30	31	32	33	74	35	36	37	38	30	40	41	42	43	44	45	46
151																							
152																							
Ref.	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
1	6.																						
4	5.																						
5	14																						
6	13.			12																			
30	1.			1						1						1			1				
32	27																						
38	9																						
39	2																						
47	3			3	3																		
48								2															
52	15	15																					
55	11																						
59			2											2									2
60				8																			
63	8	8		8	8	8				6	7												
64				11																			
77	21																						
80			17																				
86																							
87	11		10				10		9			10	10	10			9	9					
91																					20		
94	1	1	5	_			_																
95	-			-																	_		
99																							
100																							
103																							
104																							
107																		_					
111																							
113												• • •											
118												• • •											
120																							
121												• • •											
125	1	-		-		_				-		_			-						_		1
126 127																							
129												6											
130																							
135																							
138																							
139	• • •																						
143																							
148																							
151												• • •											
171	J				• • •		• • •	• • •	• • •											• • •		• • •	• • •

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions.

Continued.

Protons

Cont	:ir	านเ	ed 	•																								Р	rot	ons
EEF.		47	4	8	49	•	50	5	1	52	53	3 !	54	55	56	. !	57	58	59											
154																														
155	-																					-								14
	-			-												-			• • •		• • •		• • •						• : :	
Ref.		70 		1	72	2 		-	-		-	_	-		79 		30 	81	82	83 	84	85	86	8	7 E	38 	89 	90 	91 	92
1	•						6						• • •		1				4											
2																														
5																			20											
6							3																							
30						•	1					• •		1	1	Ĺ.			1											1
41															12	2.														
59	-			-								-				-														
91	•			•																										
93	•			•										• • •					• • •											
95		• •		•		6			•					6		-			6											
100				-	• •	•													10											• • •
104				-				• •	•																				• • •	• • •
107																			• • •										• • •	_
113																			12											
124																														
125	-			-		•	-																							
139	-			-			• •												• • •											
142 145																			• • •											
158	-			-	• •				-																					
159	-			•	• •	•																								
7.1 =	•		• •	•	• •	•	=		•	• • •	••	• •	• •	• • •	•••	•	• •	• • •	• • •	•••	•••	• • •	• • •	• • •	• •	• • •				ons
***			**	*					+> +>	***	**	**	**	***	オオオ	+ *	**	***	***	***	***	さざさ	***	***	rrr	***				
							_		_			_	_	_											_					
Ref			22	: -	:	> 	4) . –		·	<i>,</i> 	- 8 		. 10) 	 11		13		. 15	. TE		, T	8 . 	 19	20 		_ 22	23
25																			4										5	
31																													3	
45																			19											
97	•			-																										
102																	3		10	2	2									
119						•	7	١					٠.																	
121																														
122																														
131																														. 4
133																														6
153	•			•					•						• •								• •	• • •				• • •	24	
Ref	•	24	2	25	2	6	27	7 2	28										36											
				-																										
111																														
120																														
120				_					. 4														• •		• •				• • •	
121																														
121						9.																								
121 122 126						9.	• • •	•	 13	13	3	• •	 13				• •										 			

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions.

Continued.

Deuterons

Ref. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 131	Continued. Deuterons														ns									
121 9	131 133 153	 6 	 6 	 6 23	4 6	6	4. 6. 52	30 53	31 54	32 4 55	33 56	34 57	35 58	36 59	60	61	62	63	64	65	66	67	68	69
147	121 126 129 150 Ref.	9 70	 71	 8 	 73	9 7 	 	76	 77	78	79	80	5 	 . 82	83	 	85	86	11. 87	88	89	90	91	92
Ref. Z2> 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 12	147 158	• • •	•••		11	15					14										. .	• • • •	• • • •	
12						_	***	***	***	***	k**	***	***	***	k**	***	***	k***	k***	***	\			
12	Ref.		Z 2	>	4	. 5	6	7	8															
160 18. 9 19. 9 9 9 11. 12 13 14 15 16 17 18 19 20 21 22 23 16.	17 28 45 75 160 161 Ref.								31					5 12 6 30 7 10 36	· · · · · · · · · · · · · · · · · · ·	 10		40	10	42	43		19 14 45	
160 8. Z1 = 2 A1 = 4 Helium-4 ************************************	160 161	18 14	 48	49	9 14 50	 14 51	19 52	 53	 54	9 14 55	 56	13 57	 58	 59	 60	 61	 62	9 63	 8 64	65	66	 67	68	 . 11 69
12 4 5 14 4 4 15 6 6 16 5 8 17 8 9 22 8 23 16 26 16 28 5 31 4 4	7.1 =	: 2		 A1		 4				• • •										• • •	• • •		 1 i m	 m-4
14 4 15 6 16 5 17 8 19 8 22 8 23 16 26 16 28 5 31 4	Ref.		Z2	>	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
JÖ 12 12	14 15 16 17 19 22 23 26 28 31						5 16 16						8	 6 8 9 8 5	6			4					4	

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions.

Continued.

Helium-4

f. Z2> 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2	1 10 20 20 21 30 24 5 11
5 37 6 2 3 3 7 3 3 3 8 3 3 3 2 3 3 3 3 2 9 3 4 <t< th=""><th>20 20 20 21 30 24 5</th></t<>	20 20 20 21 30 24 5
6	21 30 24 11
4	10 20 20 21 30 24 5 11
7	20 20 21 30 24 5 11
1	21 30 24 5 11
2	21 30 24 5 11
8	30 24
2	5
2	5
4 5 6 5 7 10 5 4 9 4 6 9 8 9 6 11 11 11 11 11 12 6 6 3 3 3 6 3 3 3 6 3 3 3 6 4 4 4	5
4 5 6 5 7 10 5 4 9 4 6 9 8 9 6 11 11 11 11 11 12 6 6 3 3 3 6 3 3 3 6 3 3 3 6 4 4 4	5
7	11
7	11
5	11
9	10
3 2 9 9 3 11 11 3 6 6 6 3 3 3 3 3 6 3 3 3 3 3 4 4 4	10
9	10
8	10
9	
3	
3	
3 3 6	
68	6 6
83	3 3
3	4
60	5
4 4	
4	9
4	
0	
.4 5 5 5 5 2 2	
	•
3 6 6 6 6	
9 1 6 8	
4 9 8	
9 2 2 2 2	
52 1	
57 20 8 7 9 5 2	
58 1	
/2 19	
78 29 24 29 24 30 24 30 30	
30 17 17	
33 3 3 3	
37 9 8	
39	
04 5 5	9
	9
05 7 7	9

Table 6. Number of K-shell x-ray production cross sections compiled for each target element (identified in columns by Z2) with source references of Sec. 6.2 (listed in the first column), and tabulated separately for four projectiles: protons, deuterons, helium-3, and helium-4 ions.

Continued.

Helium-4

Cont	Tilde	u.																		116		
Ref	24	25 26	5 27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
97																						
99																						
103					6.																	
105		11	L		11.					11					11							
109				4	4		4				4											
118		8	3		7.																	
120																						
126																						
133	6		6																			
134																						
136	3.															• • •	• • •	• • •	• • •	• • •	• • •	• • •
148																						
		24																				
																	• • •					
Ref.	47	48 49	9 50 																			
8 24			. –	• • •																		
24 38																						
42																						
43																						
49																						
54													-		•		-					•
59			2				-			-												
83	3.																					
87	9.			7																		
90																				5		5
94		!	5																			
95	7.		. 7									7			7					7	·	
99																						
109																						
111		21																				
126																						
128																				-		-
134																						
138	• • •																					
140																						
141		• • • •															-	•				• • •
148								-		-			-									
Ret.	. 70	71 7	2 73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	. 92
				1																		
8 49																	• • •					
49 59																						
90		5		5								_						- • •				
95			. 4 7 7					7													· · ·	_
124	• • • •	· • •																			• • • •	J
																						• • •
		· • • • •																				
				_					•	•				•	- • •	•	•	•	- • •	- • •	- • •	- • •

Table '7. Contribution (in percentage) of electron capture to ionization according to the ECPSSR theory (Refs. 15 and 16). Collision systems are specified by the target's atomic number Z2 plus projectile's energies per mass and atomic number Z1. Stars appear when the contribution of electron capture to ionization is less than 0.5 %; the numbers in bold print pertain to the systems for which data exist as compiled in Tables 2-5.

Z2	0.01	0.02	0.04	En	ergy/M 0.10	ass (i 0.20	n MeV/ 0.40	u) of 1 0.80	Hydrog 1.00	en Ions 2.00	(Z1 4.00	= 1) 8.00
4	25	26	27	26	25	16	7	1	1	¥	*	*
5	10	12	13	15	15	13	8	3	2	*	*	*
6	5	6	7	8	8	9	7	3	2	×	¥	×
7	3	, 3	4	4	5	6	5	3	2	1	*	が
8	2	2	2	3	3	4	4	3	2	1	*	*
9	2	1	1	2	2	2	3	2	2	1	*	*
10	1	1	1	1	1	2	2	2	2	1	¥	¥
11	1	1	1	1	1	1	1	· 1	1	1	*	*
12	1	1	1	1	1	1	1	1	1	1	×	*
13	1	×	×	×	×	×	1	1	1	1	×	×
14	1	*	×	×	×	¥	¥	1	1	1	¥	*
15	1	*	×	×	×	¥	¥	×	1	1	×	*
Z 2					Fnorm	/Maga	(in Ma	W/m) -	£ U_14	um Ions	. (71	- 2)
uL	0.01	0.02	0.04	0.08	0.10	0.20	0.40	0.80	1.00	2.00	4.00	8.00
	0.01	0.02		0.00	0.10	0.20	0.40	0.00	1.00	2.00	4.00	0.00
4	99	97	89	74	68	48	25	7	5	*	*	*
5	78	80	73	64	61	50	32	13	8	1	*	*
6	45	49	50	47	46	42	32	17	12	2	*	*
7	26	28	30	31	31	32	28	18	14	4	1	*
8	17	17	19	20	21	23	22	16	14	5	1	*
9	11	11	12	13	14	16	17	15	13	6	1	*
10	8	7	8	9	9	11	13	12	11	6	2	*
11	6	5	6	6	7	8	9	10	9	6	2	*
12	5	4	4	4	5	5	7	8	8	6	2	*
13	4	3	3	3	3	4	5	6	6	5	2	1
14	4	3	2	2	3	3	4	5	5	4	2	1
15	3	2	2	2	2	2	3	4	4	4	2	1
16	3	2	2	2	2	2 1	2 2	3	3 2	3 3	2 2	1 1
17 18	3	1	1 1	1 1	1 1	1	1	2 2	2	2	2	1
19	3	1	1	1	1	1	1	1	1	2	2	1
20	4	1	1	1	1	1	1	1	1	2	2	1
21	5	1	1	1	1	1	1	1	ī	1	1	1
22	6	1	1	1	1	1	1	1	1	1	1	1
23	9	1	- 1	*	×		×	1	1	1	1	1
24	14	1	1	*	×	¥	¥	1	1	1	1	1
25	23	1	ĩ	*	*	×	×	×	×	1	1	1
26	40	1	×	×	×	¥	×	¥	¥	1	1	1
27	64	2	*	*	*	×	×	¥	×	×	1	1
28	86	2	×	×	×	×	×	×	×	¥	1	1
29	96	3	×	¥	¥	×	¥	×	×	¥	1	×
30	99	4	*	*	*	×	×	×	×	×	*	*

6. References

6.1 Text references

- ¹C. H. Rutledge and R. L. Watson, At. Data Nucl. Data Tables 12, 195 (1973).
- ²R. K. Gardner and T. J. Gray, At. Data Nucl. Data Tables **21**, 515 (1978); [Erratum **24**, 281 (1979)].
- ³T. L. Hardt and R. L. Watson, At. Data Nucl. Data Tables 17, 107 (1976); R. S. Shokhi and D. Crumpton, *ibid.* 30, 49 (1984).
- ⁴G. Lapicki, Ph.D. thesis, New York University, New York, 1975, see Fig. 1 in this thesis.
- ⁵H. Paul, At. Data Nucl. Data Tables **24**, 243 (1979); Nucl. Instrum. Methods **169**, 249 (1980).
- ⁶H. Paul, Nucl. Instrum. Methods 192, 11 (1982).
- ⁷H. Paul and W. Obermann, Nucl. Instrum. Methods 214, 15 (1983).
- ⁸H. Paul, Nucl. Instrum. Methods B 3, 5 (1984) [Erratum: B 5, 554 (1984)].
- ⁹H. Paul, Nucl. Instrum. Methods B 4, 211 (1984).
- ¹⁰O. Benka and H. Paul, Comm. At. Mol. Phys. 15, 29 (1984).
- ¹¹H. Paul and J. Muhr, in *Proceedings of the 2nd Workshop on High-Energy Ion-Atom Collisions, Debrecen 1984*, edited by D. Berenyi and G. Hock (Akademiai Kiado, Budapest, 1985), p. 49.
- ¹²H. Paul and J. Muhr, Phys. Rep. 135, 47 (1986).
- ¹³H. Paul, Z. Phys. D 4, 249 (1987).
- ¹⁴O. Benka, M. Geretschlager, and H. Paul, in *Proceedings of the 3rd Workshop on High-Energy Ion-Atom Collisions, Debrecen, August 1987*, edited by D. Berenyi and G. Hock, *Lecture Notes in Physics 294* (Springer, Berlin, 1988), p. 94.
- ¹⁵W. Brandt and G. Lapicki, Phys. Rev. A 23, 1717 (1981) for direct ionization.
- ¹⁶G. Lapicki and F. D. McDaniel, Phys. Rev. A 22, 1896 (1980) (E) 23, 975 (1981) for electron capture. Also see G. Lapicki, Trans. Nucl. Sci. 28, 1066 (1981).
- ¹⁷O. Benka and M. Geretschlager (see the data base references 103 and 118 in Sec. 6.2) as well as Polish groups (see Refs. 107, 124, 139, 141, 145, 148, 150, 154, 155, 158, 159, and 161 in Sec. 6.2) report an effective energy that the projectile has after typically traversing through one-half of the target's thickness. These energies were reconverted to the incident projectile energies for the consistency with all other data compiled in Tables 2–5.
- 18 See, for example, Figs. B16-B22 and B38-B42 in the Appendix B of Ref. 12.
- ¹⁹M. O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979).
- ²⁰G. S. Khandelwal, B.-H. Choi, and E. Merzbacher, At. Data 1, 103 (1969) for direct ionization in the plane-wave Born approximation. These PWBA tables for direct ionization were extended by R. Rice, G. Basbas, and F. D. McDaniel, At. Data Nucl. Data Tables 20, 503 (1977).
- ²¹V. S. Nikolaev, Zh. Eksp. Teor. Fiz. 51, 1263 (1966) [Sov. Phys. JETP 24, 847 (1967)] for electron capture in the OBK approximation.
- ²²M. H. Chen and B. Crasemann, At. Data Nucl. Data Tables 33, 217 (1985).
- ²³D. D. Cohen and M. Harrigan, At. Data Nucl. Data Tables 33, 255 (1985).
- ²⁴J. A. Tanis, S. M. Shafroth, W. W. Jacobs, T. McAbee, and G. Lapicki, Phys. Rev. A 31, 750 (1985).
- ²⁵For other critical reviews of the ECPSSR theory see J. M. Hansteen, L. Kocbach, and A. Graue, Phys. Scripta 31, 63 (1985); J. F. Reading, Nucl. Instrum. Methods A 262, 160 (1987).
- ²⁶W. Brandt, R. Laubert, and I. Sellin, Phys. Lett. 21, 518 (1966); Phys. Rev. 151, 56 (1966).
- ²⁷W. Brandt and G. Lapicki, Phys. Rev. A 10, 474 (1974).
- ²⁸G. Basbas, W. Brandt, and R. H. Ritchie, Phys. Rev. A 7, 1971 (1973).
- ²⁹G. Basbas, W. Brandt, and R. Laubert, Phys. Rev. A 7, 983 (1973); 17, 1655 (1978).
- ³⁰W. Brandt and G. Lapicki, Phys. Rev. A 20, 465 (1979).
- ³¹G. Lapicki, Bull. Am. Phys. Soc. 26, 1310 (1981).
- ³²Equation (6) of Ref. 30 gives the effective mass for the relativistic electron m_K^8 . Note that, contrary to suggestions of Ref. 23, this mass should not enter into the argument of the energy-loss function f_K from Eq. (7) of Ref. 15; see G. Lapicki, J. Phys. B 20, L633 (1987).
- ³³G. Lapicki and A. R. Zander, Phys. Rev. A 23, 2072 (1981).
- A. Singhal and V. Singh, Physica 78, 343 (1974); 83C, 200 (1976); A. Langenberg and J. van Eck, J. Phys. B 11, 1425 (1978); A. Kumar and B. N. Roy, *ibid.* 11, 1435 (1978); F. F. Komarov and A. P. Novikov, Zh. Tekh. Fiz. 49, 264 (1979) [Sov. Phys. Tech. Phys. 24, 155 (1979)]; S. N.

- Chatterjee, A. Kumar, and B. N. Roy, Physica 122C, 275 (1983); C. V. Seth, Phys. Rev. A 29, 1151 (1984).
- 35J. L. Duggan, P. M. Kocur, J. L. Price, F. D. McDaniel, R. Mehta, and G. Lapicki, Phys. Rev. A 32, 2088 (1985).
- ³⁶D. H. Madison and E. Merzbacher, in *Atomic Inner Shell Processes*, edited by B. Crasemann (Academic, New York, 1975), Vol. I, p.1.
- ³⁷L. Kocbach, Phys. Norvegica **8**, 187 (1976).
- ³⁸E. Laegsgaard, J. U. Andersen, and M. Lund, in *Proceedings of the 10th International Conference on the Physics of Electronic and Atomic Collisions, Paris*, edited by G. Watel (North-Holland, Amsterdam, 1978), p. 353; F. Bell, Nucl. Instrum. Methods 192, 103 (1982).
- ³⁹E. C. Montenegro and A. G. de Pinho, J. Phys. B 15, 1521 (1982); E. C. Montenegro and G. B. Baptista, Nucl. Instrum. Methods B 3, 16 (1984);
 E. C. Montenegro and G. M. Sigaud, J. Phys. B 18, 299 (1985).
- ⁴⁰K. M. Barfoot, I. V. Mitchell, H. L. Esbach, and W. B. Gilboy, J. Phys. B 15, L845 (1982).
- ⁴¹D. D. Cohen, J. Phys. B 16, L415 (1983).
- ⁴²T. Mukoyama and L. Sarkadi, Phys. Rev. A 23, 375 (1981); Nucl. Instrum. Methods 179, 573 (1981); 205, 341 (1983); 211, 525 (1983); Phys. Rev. A 25, 1411 (1982); 28, 1303 (1983).
- M. H. Chen, B. Crasemann, and H. Mark, Phys. Rev. A 26, 1243 (1982).
 M. H. Chen, Phys. Rev. A 27, 2358 (1983); M. H. Chen, B. Crasemann, and H. Mark, *ibid.* 30, 2082 (1984).
- ⁴⁵M. H. Chen and B. Crasemann, Phys. Rev. A 34, 87 (1986).
- ⁴⁶A. Kropf, Nucl. Instrum. Methods 142, 79 (1977); O. Benka, M. Geretschlager, and H. Paul, *ibid*. 142, 83 (1977); K. G. Bauer, Q. Fazly, T. Mayer-Kuckuk, H. Mommsen, and P. Schurkes, *ibid*. 148, 407 (1978); O. Benka, M. Geretschlager, and A. Kropf, *ibid*. 149, 441 (1978); E. Clayton, *ibid*. 191, 567 (1981); E. Clayton, D. D. Cohen, and P. Duerden, *ibid*. 191, 573 (1981); J. L. Campbell, J. A. Cookson, and H. Paul, *ibid*. 212, 427 (1983); J. A. Cookson and J. L. Campbell, *ibid*. 216, 489 (1983) B 3, 185 (1984); G. Linder, *ibid*. B 3, 130 (1984); D. D. Cohen and E. Clayton, *ibid*. B 22, 59 (1987); J. L. Campbell, A. Perujo, W. J. Weesdale, and J. A. Cookson, *ibid*. B 30, 317 (1988). The ECPSSR theory was also recommended for deuteron induced x-ray analysis by K. M. Barfoot, Nucl. Instrum. Methods B 14, 76 (1986).
- ⁴⁷D. D. Cohen and M. Harrigan, Nucl. Instrum. Methods B 15, 576 (1986) and At. Data Nucl. Data Tables 34, 393 (1986); T. Hirokawa, F. Nishiyama, and Y. Kiso, Nucl. Instrum. Methods B 31, 525 (1988).
- ⁴⁸W. N. Lennard and D. Phillips, Nucl. Instrum. Methods 166, 151 (1979); R. Mehta, J. L. Duggan, J. L. Price, F. D. McDaniel, and G. Lapicki, Phys. Rev. A 26, 1883 (1982); W. Maenhaunt and H. Raemdonck, Nucl. Instrum. Methods B 1, 123 (1984).
- ⁴⁹W. Jitschin, H. Kleinpoppen, R. Hippler, and H. O. Lutz, J. Phys. B 12, 4077 (1979); J. Palinkas, L. Sarkadi, and B. Schlenk, *ibid.* 13, 3829 (1980); V. V. Sizov and N. M. Kabachnik *ibid.* 16, 1565 (1983); D. Berenyi, I. Cserny, I. Kadar, A. Kover, S. Ricz, L. Sarkadi, D. Varga, and J. Vegh, *ibid.* 17, 829 (1984); U. Werner, W. Jitschin, and H. O. Lutz, *ibid.* 18, 3111 (1984).
- ⁵⁰D. D. Cohen and M. Harrigan, At. Data Nucl. Data Tables 34, 393 (1986); E. Rosato, Nucl. Instrum. Methods B 15, 591 (1986); D. D. Cohen, *ibid.* 22, 55 (1987); J. Q. Xu and E. Rosato, Phys. Rev. A 37, 1946 (1988).
- ⁵¹W. Brandt and G. Basbas, Phys. Rev. A 27, 578 (1983); (E) 28, 3142 (1983).
- ⁵²A. Langerberg and J. van Eck, J. Phys. B 10, L419 (1977).
- K. Unterseer and N. Kleber, Nucl. Instrum. Methods 192, 35 (1982); D.
 J. Land, D. G. Simons, and M. D. Brown, ibid. 214, 35 (1983); B 4, 239 (1984); L. Kocbach, ibid. B 4, 248 (1984); L. Sarkadi, ibid. B 9, 127 (1985); D. H. Jakubasa-Amundesen, Z. Phys. A 320, 557 (1985); D. J. Land, Nucl. Instrum. Methods A 240, 470 (1985) and Bull. Am. Phys. Soc. 31, 981 (1986).
- ⁵⁴J. F. Reading, A. L. Ford, J. S. Smith, and R. L. Becker, in *Invited Talks, the XIIth International Conference on the Physics of Electronic and Atomic Collisions*, edited by J. Eichler, I. V. Hertel, and N. Stolterfoht (Elsevier, Amsterdam, 1984); J. F. Reading and A. L. Ford, Phys. Rev. Lett. **58**, 543 (1987); J. Phys. B **20**, 3747 (1987), applied this method most recently to calculate double, and single, direct ionization of helium by 0.3–40 MeV protons and antiprotons, i.e., in the $v_1/v_{2K} > 2$ range where the first Born approximation is well justified.
- ⁵⁵A. Graue, J. M. Hansteen, R. Gundersen, and L. Kocbach, J. Phys. B 15, L445 (1982).
- ⁵⁶R. Gundersen, J. M. Hansteen, and L. Kocbach, Nucl. Instrum. Methods 192, 63 (1982); J. M. Hansteen, L. Kocbach, and A. Graue, Phys. Scripta 31, 63 (1985). See J. M. Hansteen, Ref. 14, p. 39, for the latest status of

- semiclassical calculations.
- ⁵⁷J. F. Reading, A. L. Ford, and R. L. Becker, J. Phys. B **14**, 1995 (1981); J. F. Reading, A. L. Ford, M. Martir, and R. L. Becker, Nucl. Instrum. Methods **192**, 1 (1982).
- ⁵⁸D. Trautmann, R. Rosel, and G. Baur, Nucl. Instrum. Methods 214, 21 (1983); A. Jakob, D. Trautmann, R. Rosel, and G. Baur, *ibid*. B 4, 218 (1984).
- ⁵⁹G. Mehler, T. de Reus, U. Muller, J. Reinhardt, B. Muller, W. Greiner, and G. Soff, Nucl. Instrum. Methods A240, 559 (1985).
- ⁶⁰G. Mehler, W. Greiner, and G. Soff, J. Phys. B 20, 2787 (1987).
- ⁶¹L. Kocbach, Nucl. Instrum. Methods B4, 248 (1984).
- ⁶²T. Mukoyama and C. D. Lin, Nucl. Instrum. Methods A262, 15 (1987) and in Ref. 14, p. 84. These authors compare their calculations with an early version of ECPSSR theory, which gives 2%-5% lower values for 0.5-2 MeV protons on copper. As can be seen from Fig. 3 of Ref. 7, the ECPSSR cross section is 10% above the Mukoyama and Lin calculation for 2-MeV protons on copper.
- ⁶³R. Anholt, W. E. Meyerhof, H. Gould, C. Munger, J. Alonso, P. Thieberger, and H. E. Wegner, Phys. Rev. A 32, 3302 (1985); R. Anholt and H. Gould, Adv. At. Mol. Phys. 22, 315 (1986).
- ⁶⁴See, L. Sarkadi, in Ref. 53.
- ⁶⁵G. Basbas and D. J. Land, Phys. Rev. A 35, 1003 (1987).
- 66I. Chadwick, Philos. Mag. 25, 193 (1913); ibid. 24, 594 (1912).
- ⁶⁷J. M. Cork, Phys. Rev. **59**, 957 (1941).
- ^{os}G. Lapicki, R. Laubert, and W. Brandt, Phys. Rev. A22, 1889 (1980); S. Raith, S. Divoux, and B. Gonsior, Nucl. Instrum. Methods B 10/11, 169 (1985); M. Harrison and D. D. Cohen, *ibid.* B 15, 581 (1986); T. Papp and B. Schlenk, J. Phys. B 20, 2255 (1987); R. A. Ilkhamov, S. H. Khusmurodov, A. P. Kobzev, J. H. Li, M. Pajek, and R. Sandrik, in Ref. 14, p. 103. See also Refs. 5, 6, 9, 10, 12, and 13.
- ⁶⁹G. Lapicki and W. Losonsky, Phys. Rev. A 20, 481 (1979).
- ⁷⁰J. M. Hansteen, in Ref. 14, p. 39, argues that the velocity-symmetrized hyperbolic trajectory implies an exact treatment of the Coulomb-deflection effect. However, such symmetrization spoils the unitarity of the scattering matrix; see F. Wolf, R. J. Allen, and H. J. Korsch, Comm. At. Mol. Phys. 18, 107 (1986).
- ⁷¹G. Basbas and G. S. Khandelwal, Bull. Am. Phys. Soc. **11**, 307 (1966) and Fig. 3 from the 1973 article of Ref. 29; A. L. Ford, E. Fitchard, and J. F. Reading, Phys. Rev. A **16**, 133 (1977); D. J. Land, M. D. Brown, D. Simons, and J. G. Brennan, Nucl. Instrum. Methods **192**, 53 (1982); P. Rez, X-Ray Spectrometry **13**, 55 (1984).
- ⁷²L. Sarkadi and T. Mukoyama, J. Phys. B **14**, L255 (1981) and Nucl. Instrum. Methods **B4**, 296 (1984); K. Finck, W. Jitschin, and H. O. Lutz, J. Phys. B **16**, L403 (1983); L. Sarkadi and T. Papp, Acta Physica Hungarica **58**, 75 (1985).
- ⁷³L. Sarkadi, J. Phys. B **18**, 2519 and L755 (1986); Nucl. Instrum. Methods A **265**, 45 (1987).
- ⁷⁴S. Zehendner, G. B. Baptista, R. Donner, E. Justiniano, J. Konrad, H. Schmidt-Bocking, and R. Schuch, Z. Phys. D 4, 243 (1987); L. Sarkadi and T. Mukoyama, J. Phys. B 20, L559 (1987); W. Schadt, H. Schmidt-Bocking, G. Nolte, Z. Roller, A. Skutlartz, M. Wassermann, and G. Zschornack, Z. Phys. D 8, 271 (1988).
- ⁷⁵L. Sarkadi and T. Mukoyama, Phys. Rev. A 37, 4540 (1988).

6.2. References to cross-section data compiled in Tables 2–5

- 'H. W. Lewis, B. E. Simmons, and E. Merzbacher, Phys. Rev. 91, 943 (1953).
- ²P. R. Bevington and E. M. Bernstein, Bull. Am. Phys. Soc. 1, 198 (1956).
- ³J. M. Hansteen and S. Messelt, Nucl. Phys. 2, 526 (1957).
- ⁴B. Singh, Phys. Rev. 107, 711 (1957).
- ⁵E. Merzbacher and H. W. Lewis, in *Handbuch der Physik*, edited by S. Flugge (Springer, Berlin, 1958), Vol. 34, p. 119.
- ⁶S. Messelt, Nucl. Phys. 5, 435 (1958).
 ⁷R. C. Jopson, H. Mark, and C. D. Swift, Phys. Rev. 127, 1612 (1962).
- Energies were recalibrated according to the footnote 9 of Ref. 9.
- ⁸N. L. Lark, Bull. Am. Phys. Soc. 7, 623 (1962).
 ⁹J. M. Khan and D. L. Potter, Phys. Rev. 133, A 890 (1964).
- ¹⁰W. T. Ogier, G. J. Lucas, J. S. Murray, and T. E. Holzer, Phys. Rev. A 134, 1070 (1964).
- ¹¹J. M. Khan, D. L. Potter, and R. D. Worley, Phys. Rev. 139, A 1735 (1965).
- ¹²W. Brandt, R. Laubert, and I. Sellin, Phys. Rev. 151, 56 (1966).

- ¹³L. J. Christensen, J. M. Khan, and W. F. Brunner, Rev. Sci. Instrum. 38, 20 (1967).
- ¹⁴P. Komarek, Acta Phys. Austriaca 26, 315 (1967).
- ¹⁵P. Komarek, Acta Phys. Austriaca 27, 369 (1968).
- ¹⁶R. C. Der, T. M. Kavanagh, J. M. Khan, B. P. Curry, and R. J. Fortner, Phys. Rev. Lett. 26, 1731 (1968).
- ¹⁷W. Brandt and R. Laubert, Phys. Rev. 178, 225 (1969).
- ¹⁸R. R. Hart, F. W. Reuter III, H. P. Smith, Jr., and J. M. Khan, Phys. Rev. 179, 4 (1969).
- B. Sellers, F. A. Hanser, and H. H. Wilson, Phys. Rev. 182, 90 (1969).
 G. Bissinger, J. M. Joyce, E. J. Ludwig, W. S. McEver, and S. M. Shafroth, Phys. Rev. A 1, 841 (1970).
- ²¹P. Richard, T. I. Bonner, T. Furuta, I. L. Morgan, and J. R. Rhodes, Phys. Rev. A 1, 1044 (1970).
- ²²P. B. Needham, Jr. and B. D. Sartwell, Phys. Rev. A 2, 27 (1970).
- M. Terasawa, T. Inouye, and H. Kamei, Jpn. J. Phys. 29, 1394 (1970).
 R. L. Watson, C. W. Lewis, and J. B. Natowitz, Nucl. Phys. A 154, 561 (1970).
- ²⁵K. Shima, I. Makino, and M. Sakisaka, Jpn. J. Phys. 30, 611 (1971).
- ²⁶M. Terasawa, Progress Report, Institute of Space and Aeronautical Science, edited by T. Takayanagi (University of Tokyo, March 1971).
- ²⁷A. Fahlenius and P. Jauho, Ann. Acad. Sci. Fenn. Ser. A **6** 367, 3 (1971).
- K. Shima, I. Makino, and M. Sakisaka, Jpn. J. Phys. 31, 971 (1971).
 P. B. Needham, Jr. and B. D. Sartwell, Adv. X-Ray Anal. 14, 184
- (1971).

 30O. N. Jarvis, C. Whitehead, and M. Shah, Phys. Rev. A 5, 1198 (1972).
- ³¹C. W. Lewis, R. L. Watson, and J. B. Natowitz, Phys. Rev. A 5, 1773 (1972).
- ³²G. Bissinger, S. M. Shafroth, and A. W. Waltner, Phys. Rev. A 5, 2046 (1972).
- ³³F. W. Reuter III and H. P. Smith, Jr., J. Appl. Phys. 43, 4228 (1972).
- ³⁴R. G. Musket and W. Bauer, J. Appl. Phys. **43**, 4786 (1972).
- 35M. Terasawa, T. Tamura, and H. Kamada, Jpn. J. Phys. 33, 1420 (1972).
 36J. L. Duggan, W. L. Beck, L. Albrecht, L. Munz, and J. D. Spaulding, Adv. X-Ray Anal. 15, 407 (1972).
- ³⁷G. Bissinger and H. W. Kugel, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 993.
- ³⁸J. Lin, J. L. Duggan, and R. F. Carlton, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 998.
- ³⁹E. Laegsgaard, J. U. Andersen, and L. C. Feldman, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1019.
- ⁴⁰L. M. Winters, L. D. Ellsworth, T. Chiao, and J. R. Macdonald, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1069.
- ⁴¹A. W. Waltner, D. M. Peterson, G. Bissinger, A. B. Baskin, C. E. Busch, P. H. Nettles, W. R. Scates, and S. M. Shafroth, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1080.
- ⁴²A. Van der Woude, M. J. Saltmarsh, C. A. Ludemann, R. L. Hahn, and E. Eichler, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1388.
- ⁴³R. H. McKnight, S. T. Thornton, and R. C. Ritter, in *Proceedings of International Conference on Inner Shell Ionization Phenomena, Atlanta 1972*, edited by R. W. Fink, S. T. Manson, M. Palms, and P. V. Rao (U.S. AEC, Oak Ridge, Tn, 1973), p. 1439.
- ⁴⁴A. Fahlenius, in *Electrical and Nuclear Technology Publication 3* (Technical Research Centere of Finland, Helsinki, 1973).
- ⁴⁵G. Basbas, W. Brandt, and R. Laubert, Phys. Rev. A 7, 983 (1973).
- ⁴⁶K. G. Harrison, H. Tawara, and F. J. De Heer, Physica **66**, 6 (1973).
- ⁴⁷R. C. Bearse, D. A. Close, J. J. Malanify, and C. J. Umbarger, Phys. Rev. A 7, 1269 (1973).
- ⁴⁸L. M. Winters, J. R. Macdonald, M. D. Brown, L. D. Ellsworth, and T. Chiao, Phys. Rev. A 7, 1276 (1973).
- ⁴⁹T. L. Hardt and R. L. Watson, Phys. Rev. A 7, 1917 (1973).
- ⁵⁰A. Langenberg and J. van Eck, Phys. Rev. Lett. 31, 71 (1973).
- ⁵¹K. Brunner and W. Hink, Z. Phys. 262, 181 (1973).

- ⁵²R. B. Liebert, T. Zabel, D. Miljanic, H. Larson, V. Valkovic, and G. C. Phillips, Phys. Rev. A 8, 2336 (1973).
- ⁵³R. D. Lear and T. J. Gray, Phys. Rev. A 8, 2469 (1973). T. J. Gray, R. D. Lear, R. J. Dexter, F. N. Schwettmann, and K. Wiemer report these data also in Thin Solid Films 19, 103 (1973).
- ⁴R. H. McKnight, S. T. Thornton, and R. R. Karlowicz, Phys. Rev. A 9, 267 (1974).
- ⁵⁵R. Akselsson and T. B. Johansson, Z. Phys. 266, 245 (1974).
- ⁵⁶H. Tawara, K. Ishii, S. Morita, H. Kaji, C. N. Hsu, and T. Shiokawa, Phys. Rev. A 9, 1617 (1974).
- ⁵⁷R. M. Wheeler, R. P. Chaturvedi, and A. R. Zander, in *Proceedings of the 3rd Conference on Applications of Small Accelerator, Denton 1974*, edited by J. L. Duggan and I. L. Morgan (National Technical Information Service, Springfield, Virginia, 1974), Vol. I, p. 387.
- ⁵⁸D. Burch, N. Stolterfoht, D. Schneider, H. Wieman, and J. S. Risley, Phys. Rev. Lett. 32, 1151 (1974).
- ⁵⁹F. Folkmann, J. Borggreen, and A. Kjeldgaard, Nucl. Instrum. Methods 119, 117 (1974).
- ⁶⁰K. Ishii, S. Morita, H. Tawara, H. Kaji, and T. Shiokawa, Phys. Rev. A 10, 774 (1974).
- ⁶¹T. L. Criswell and T. J. Gray, Phys. Rev. A 10, 1145 (1974).
- ⁶²R. H. McKnight, S. T. Thornton, and R. R. Karlowicz, Nucl. Instrum. Methods 123, 1 (1975).
- ⁶³N. A. Khelil and T. J. Gray, Phys. Rev. A 11, 893 (1975).
- ⁶⁴F. Hopkins, R. Brenn, A. R. Whittemore, J. Karp, and S. K. Bhattacherjee, Phys. Rev. A 11, 916 (1975).
- ⁶⁵S. J. Czuchlewski, J. R. Macdonald, and L. D. Ellsworth, Phys. Rev. A 11, 1108 (1975).
- ⁶⁶F. Hopkins, R. Brenn, A. R. Whittemore, N. Cue, and V. Dutkiewicz, Phys. Rev. A 11, 1482 (1975).
- ⁶⁷F. D. McDaniel, T. J. Gray, and R. K. Gardner, Phys. Rev. A 11, 1607 (1975).
- (1975).

 68W. N. Lennard and I. V. Mitchell, Phys. Rev. A 12, 1723 (1975).
- ⁶⁹F. Bodart, S. Wilk, and G. Deconninck, X Ray Spectrometry 4, 161 (1975).
- ⁷⁰D. Burch, Phys. Rev. A 12, 2225 (1975).
- ⁷¹K. Kawatsura, K. Ozawa, F. Fujimoto, and M. Terasawa, in *Ion Beam Surface Layer Analysis*, edited by O. Meyer, G. Linker, and F. Käppeler (Plenum, New York, 1976), Vol. 2, p. 719.
- ⁷²F. D. McDaniel and J. L. Duggan, in *Beam Foil Spectroscopy Collisional and Radiative Processes*, edited by I. A. Sellin and D. J. Pegg (Plenum, New York, 1976), Vol. 2, p. 519.
- ⁷³V. S. Nikolaev, V. P. Petukhov, E. R. Romanovsky, V. A. Sergeev, I. M. Kruglova, and V. V. Beloshitsky, 9th International Conference on the Physics of Electronic and Atomic Collisions, Seattle 1975, edited by J. S. Risley and R. Geballe (University of Washington, Washington, 1976), p. 419.
- ⁷⁴R. R. Randall, J. A. Bednar, B. Curnette, and C. L. Cocke, Phys. Rev. A 13, 204 (1976).
- ⁷⁵H. Tawara, Y. Hachiya, K. Ishii, and S. Morita, Phys. Rev. A 13, 572 (1976).
- ⁷⁶M. Milazzo and G. Riccobono, Phys. Rev. A **13**, 578 (1976).
- 77M. R. Khan, D. Crumpton, and P. E. Francois, J. Phys. B9, 455 (1976).
- ⁷⁸C. G. Soares, R. D. Lear, J. T. Sanders, and H. A. Van Rinsvelt, Phys. Rev. A 13, 953 (1976).
- ⁷⁹A. R. Zander, Y. Chee, J. Walls, and B. Crews, in Abstracts of Contributed Papers, Second International Conference on Inner Shell Ionization Phenomena, Freiburg 1976, edited by W. Melhorn (University of Freiburg, Freiburg, 1976), p. 253.
- ⁸⁰E. Kolatay, D. Berenyi, I. Kiss, S. Ricz, G. Hock, and J. Basco, Z. Phys. A 278, 299 (1976).
- ⁸¹G. Bissinger, J. M. Joyce, and H. W. Kugel, Phys. Rev. A 14, 1375 (1976).
- ⁸²A. Langenberg and J. van Eck, J. Phys. B 9, 2421 (1976).
- ⁸³T. Badica, C. Ciortea, S. Dima, A. Petrovici, I. Popescu, and V. Neacsu, X-Ray Spectrometry 6, 90 (1977).
- ⁸⁴B. Knaf, G. Presser, and J. Stahler, Z. Phys. A 282, 25 (1977).
- ⁸⁵G. Bissinger, J. M. Joyce, B. L. Doyle, W. W. Jacobs, and S. M. Shafroth, Phys. Rev. A 16, 443 (1977).
- ⁸⁶M. R. Khan, A. G. Hopkins, D. Crumpton, and P. E. Francois, X-Ray Spectrometry 6, 140 (1977).
- 87S. R. Wilson, F. D. McDaniel, J. R. Rowe, and J. L. Duggan, Phys. Rev. A 16, 903 (1977).
- ⁸⁸K. H. Weber and F. Bell, Phys. Rev. A 16, 1075 (1977).
- ⁸⁹H. Schmidt-Bocking, R. Schule, K. E. Steibing, K. Bethge, I. Tserruya,

- and H. Zekl, J. Phys. B 10, 2663 (1977).
- ⁹⁰G. Deconninck and M. Longree, Phys. Rev. A 16, 1390 (1977).
- ⁹¹M. Kamiya, K. Ishii, K. Sera, S. Morita, and H. Tawara, Phys. Rev. A 16, 2295 (1977).
- ⁹²K. Kawatsura, Ph.D. thesis (University of Kyoto, Kyoto, 1977).
- ⁹³E. Laegsgaard, J. U. Andersen, and M. Lund, 10th International Conference on the Physics of Electronic and Atomic Collisions, Paris 1977, edited by G. Watel (North-Holland, Amsterdam, 1978), p. 353.
- ⁹⁴G. Bonani, C. Stoller, M. Stockli, M. Suter, and W. Wolfli, Helv. Phys. Acta 51, 272 (1978).
- 95R. Anholt, Phys. Rev. A 17, 983 (1978).
- ⁹⁶S. M. Brodskii, S. V. Mamikonyan, and V. I. Filatov, Atomnaya Energiya 44, 265 (1978) [Sov. Atomic Energy 44, 300 (1978)].
- 97G. Basbas, W. Brandt, and R. Laubert, Phys. Rev. A 17, 1655 (1978).
- 98J. S. Lopes, A. P. Jesus, G. P. Ferreira, and F. B. Gil, J. Phys. B 11, 2181 (1978).
- ⁹⁹C. Bauer, R. Mann, and W. Rudolph, Z. Phys. A 287, 27 (1978).
- ¹⁰⁰A. Berinde, C. Deberth, I. Neamu, C. Protop, N. Scintei, V. Zoran, M. Dost, and S. Rohl, J. Phys. B 11, 2875 (1978).
- ¹⁰¹K. Shima, Phys. Lett. A 67, 351 (1978).
- ¹⁰²K. Shima, Jpn. J. Appl. Phys. 17, Supplement 17-2, 350 (1978).
- ¹⁰³O. Benka and M. Geretschlager, Z. Phys. A 284, 29 (1978).
- ¹⁰⁴W. D. Ramsay, M. S. A. L. Al-Ghazi, J. Birchall, and J. S. C. McKay, Phys. Lett. A 69, 258 (1978)
- ¹⁰⁵M. Poncet and C. Engelmann, Nucl. Instrum. Methods 159, 455 (1979).
- ¹⁰⁶J. S. Lopes, A. P. Jesus, S. C. Ramos, and G. P. Ferreira, J. Phys. B 12, 605 (1979).
- ¹⁰⁷A. Celler, J. Kantele, M. Luontama, and J. Zylicz, Nucl. Instrum. Methods 163, 221 (1979).
- ¹⁰⁸A. R. Zander and M. C. Andrews III, Phys. Rev. A 20, 1484 (1979).
- ¹⁰⁹T. Badica, C. Ciortea, A. Petrovici, and I. Popescu, X-Ray Spectrometry 8, 186 (1979).
- ¹¹⁰W. N. Lennard and D. Phillips, Nucl. Instrum. Methods 166, 521 (1979).
- ¹¹¹C. Magno, M. Milazzo, C. Pizzi, F. Porro, A. Rota, and G. Riccobono, Nuovo Cimento A 54, 277 (1979).
- ¹¹²K. M. Barfoot, I. V. Mitchell, H. L. Eschbach, and W. B. Gilboy, Nucl. Instrum. Methods 168, 131 (1980).
- ¹¹³E. Laegsgaard, J. U. Andersen, and F. Hogedal, Nucl. Instrum. Methods 169, 293 (1980).
- ¹¹⁴M. Dost, Nucl. Instrum. Methods 169, 305 (1980).
- ¹¹⁵J. S. Lopes, A. P. Jesus, and S. C. Ramos, Nucl. Instrum. Methods 169, 311 (1980).
- ¹¹⁶K. Kawatsura, A. Ootuka, K. Ozawa, F. Fujimoto, K. Komaki, and M. Terasawa, Nucl. Instrum. Methods 170, 265 (1980).
- ¹¹⁷K. Sera, K. Ishii, M. Kamiya, A. Kuwako, and S. Morita, Phys. Rev. A 21, 1412 (1980).
- ¹¹⁸O. Benka and M. Geretschlager, J. Phys. B 13, 3223 (1980).
- ¹¹⁹T. Scharnagl and W. Hink, J. Phys. B 13, 4021 (1980).
- ¹²⁰G. Lapicki, R. Laubert, and W. Brandt, Phys. Rev. A 22, 1889 (1980).
- ¹²¹A. P. Jesus and J. S. Lopes, *Inner-Shell and X-Ray Physics of Atoms and Solids*, edited by D. J. Fabian, H. Kleinpoppen, and L. M. Watson (Plenum, New York, 1981), p. 21.
- ¹²²Z. Szokefalvi-Nagy and I. Demeter, Nucl. Instrum. Methods 181, 1 (1981).
- ¹²³L. Avaldi, M. Milazzo, A. Rota, and G. Riccobono, J. Phys. B 14, 2223 (1981).
- ¹²⁴P. Hornshoj, Z. Zelazny, M. Jaskola, L. Zemlo, A. Celler, and J. Szerypo, J. Phys. B 14, 2391 (1981).
- ¹²⁵M. Dost, S. Hoppenau, J. Kising, S. Rohl, and P. Schorn, Phys. Rev. A 24, 693 (1981).
- ¹²⁶R. K. Rice, F. D. McDaniel, G. Basbas, and J. L. Duggan, Phys. Rev. A 24, 758 (1981).
- ¹²⁷P. Cuzzocrea, E. Perillo, E. Rosato, G. Spadaccini, N. De Cesare, and M. Vigilante, Lett. Nuovo Cimento 32, 33 (1981).
- ¹²⁸M. Dost, S. Hoppenau, S. Rohl, and W. A. Schonfeldt, J. Phys. B **14**, 3153 (1981).
- ¹²⁹A. P. Jesus and J. S. Lopes, Nucl. Instrum. Methods **192**, 25 (1982).
- ¹³⁰J. U. Andersen, E. Laegsgaard, and M. Lund, Nucl. Instrum. Methods 192, 79 (1982).
- ¹³¹K. M. Barfoot, I. V. Mitchell, H. L. Eschbach, and W. B. Gilboy, J. Phys. B 15, L845 (1982).
- ¹³²M. D. Brown, D. G. Simons, D. J. Land, and J. G. Brennan, Phys. Rev. A 25, 2935 (1982).
- ¹³³J. S. Lopes, A. P. Jesus, and M. F. Da Silva, J. Phys. B 15, 1749 (1982).

- ¹³⁴D. Bhattacharya, A. Roy, S. K. Bhattacherjee, and S. K. Mitra, J. Phys. B 15, 3047 (1982).
- 135D. Bhattacharya and S. K. Mitra, Pramana 19, 399 (1982).
- ¹³⁶K. Ishii, M. Sebata, M. Kamiya, A. Kuwako, S. Morita, Y. Awaya, and T. Tonuma, Jpn. J. Phys. **51**, 4021 (1982).
- ¹³⁷M. D. Brown, D. G. Simons, D. J. Land, and J. G. Brennan, IEEE Trans. Nucl. Sci. 30, 957 (1983).
- ¹³⁸L. Avaldi, M. Milazzo, G. Trivia, and I. V. Mitchell, J. Phys. B 16, 1957 (1983).
- ¹³⁹M. Goclowski, M. Jaskola, J. Szerypo, P. Hornshoj, and Z. Zelazny, J. Phys. B 16, 3571 (1983).
- ¹⁴⁰Z. Sujkowski, D. Chmielewska, and M. N. Harakeh, Nucl. Instrum. Methods 219, 111 (1984).
- ¹⁴¹Z. Zelazny and P. Hornshoj, J. Phys. B 17, 1867 (1984).
- ¹⁴²N. V. De Castro Faria, F. L. Freire, Jr., E. C. Montenegro, A. G. De Pinho, and E. F. Da Silviera, J. Phys. B 17, 2307 (1984).
- ¹⁴³L. Avaldi, I. V. Mitchell, and H. L. Eschbach, Nucl. Instrum. Methods B 3, 21 (1984).
- 144S. Divoux, B. Raith, and B. Gonsior, Nucl. Instrum. Methods B 3, 27 (1984).
- ¹⁴⁵M. Pfuetzner, J. Szerypo, Z. Zelazny, J. Zylicz, M. Goclowski, M. Jaskola, L. Zemlo, and P. Hornshoj, Nucl. Instrum. Methods B 3, 33 (1984).
- ¹⁴⁶W. N. Lennard, J. S. Foster, H. Geissel, K. M. Barfoot, and D. Phillips, Nucl. Instrum. Methods B 4, 262 (1984).
- ¹⁴⁷F. L. Freire, Jr., E. C. Montenegro, A. G. De Pinho, and G. M. Sigaud, J. Phys. B 18, 313 (1985).
- ¹⁴⁸E. Braziewicz, J. Braziewicz, M. Pajek, G. N. Osetynski, and J. Ploskonka, J. Phys. B 19, 1471 (1986).
- ¹⁴⁹M. Geretschlager and O. Benka, Phys. Rev. A 34, 866 (1986).
- ¹⁵⁰F. M. El-Ashry, M. Goclowski, L. Glowacka, M. Jaskola, Z. Zelazny, and J. Szerypo, J. Phys. B 19, 2311 (1986).
- 151H. Xu, C. Ren, J. Tang, and F. Yang, in announcement of the 10th International CODATA Conference, Ottawa, 1986. Data obtained by

- private communication from H. Xu of Fudan University (1986). J. Li, H. Xu, C. Ren, and F. Lu, Nucl. Instrum. Methods B 30, 16 (1988), report $\sigma_{EX}^{EXP} = 42.9b$ for 2-MeV protons on copper. This cross section agrees with (45.5 \pm 3.2) b from Xu's 1986 communication; it is in excellent agreement with the empirical "reference" (42.2 \pm 0.8) b from Ref.12 of Sec.6.2 and it lies 1% below $\sigma_{EX}^{ECPSSR} = 43.4$ b.
- 152S. O. Olabanji and J. M. Calvert, Nucl. Instrum. Methods A 251, 354 (1986)
- ¹⁵³E. C. Montenegro, A. G. De Pinho, and G. M. Sigaud, J. Phys. B 19, 3287 (1986).
- ¹⁵⁴Z. Zelazny, M. Pfuetzner, J. Szerypo, M. Jaskola, and M. Goclowski, J. Phys. B 19, 4185 (1986).
- 155F. M. El-Ashry, L. Glowacka, M. Jaskola, M. Pfuetzner, J. Szerypo, Z.
 Zelazny, G. M. Osetynski, and M. Pajek, Nucl. Instrum. Methods B 22,
 82 (1987). Only the data that have not been tabulated in prior references are taken from this article.
- ¹⁵⁶S. O. Olabanji and B. G. Martinsson, Nucl. Instrum. Methods B 24/25, 81 (1987).
- ¹⁵⁷R. P. Bhalla, F. D. McDaniel, and G. Lapicki, Phys. Rev. A 35, 3655 (1987).
- ¹⁵⁸M. Pfuetzner, J. Szerypo, Z. Zelazny, F. M. El-Ashry, M. Goclowski, L. Glowacka, D. Trautmann, and M. Jaskola, J. Phys. B 20, 3453 (1987).
- ¹⁵⁹J. Szerypo, M. Pfuetzner, W. Kretschmer, R. Schmitt, W. Schuster, A. Bienkowski, L. Glowacka, D. Trautmann, and M. Jaskola, J. Phys. B 20, 5475 (1987).
- ¹⁶⁰D. G. Simons, J. L. Price, Jr., and D. J. Land, 15th International Conference on the Physics of Electronic and Atomic Collisions, Brighton 1987, edited by J. Geddes, H. B. Gilbody, A. E. Kingston, C. J. Latimer, and H. J. R. Walters (Oueen's University, Belfast, 1987), p. 610.
- ¹⁶¹R. A. Ilkhamov, S. H. Khusmurodov, A. P. Kobzev, J. H. Li, M. Pajek, and R. Sandrik, in *Proceedings of the 3rd Workshop on High-Energy Ion-Atom Collisions, Debrecen 1987*, edited by D. Berenyi and G. Hock, *Lecture Notes in Physics 294* (Springer, Berlin, 1988), p. 103.

6.3. Author index for the data base references in Section 6.2

Akselsson, R. 55 A1-Ghazi, M.S.A.L. 104 Albrecht, L. 36 Andersen, J.U. 39, 93, 113, 130 Andrews, M.C., III 108 Anholt, R. 95 Avaldi, L. 123, 138, 143 Awaya, Y. 136 Badica, T. 83, 109 Barfoot, K.M. 112, 131, 146 Basbas, G. 45, 97, 126 Basco, J. 80 Baskin, A.B. 41 Bauer, C. 99 Bauer, W. 34 Bearse, R.C. 47 Beck, W.L. 36 Bednar, J.A. 74 Bell, F. 88 Beloshitsky, V.V. 73 Benka, 0. 103, 118, 149 Berenyi, D. 80 Berinde, A. 100 Bernstein, E.M. 2 Bethge, K. 89 Bevington, P.R. 2 Bhalla, R.P. 157 Bhattacharya, D. 134, 135

Bhattacherjee, S.K. 64,134
Bienkowski, A. 159
Birchall, J. 104
Bissinger, G. 20,32,37,41,81,85
Bodart, F. 69
Bonani, G. 94
Bonner, T.I. 21

Borggreen, J. 59 Brandt, W. 12, 17, 45, 97, 120 Braziewicz, E. 148 Braziewicz, J. 148 Brenn, R. 64, 66 Brennan, J.G. 132, 137 Brodskii, S.M. 96

Brown, M.D. 48, 132, 137 Brunner, K. 51 Brunner, W.F. 13 Burch, D. 58, 70 Busch, C.E. 41

Calvert, J.M. 152 Carlton, R.F. 38 Celler, A. 107, 124 Chaturvedi, R.P. 57 Chee, Y. 79 Chiao, T. 40,48
Chmielewska, D. 140
Christensen, L.J. 13
Ciortea, C. 83,109
Close, D.A. 47
Cocke, C.L. 74
Crews, B. 79
Criswell, T.L. 61
Crumpton, D. 77,86
Cue, N. 66
Curnette, B. 74
Curry, B.P. 16
Cuzzocrea, P. 127
Czuchlewski, S.J. 65

Da Silva, M.F. 133 Da Silviera, E.F. 142 De Castro Faria, N.V. 142 De Cesare, N. 127 De Heer, F.J. 46 De Pinho, A.G. 142, 147, 153 Deberth, C. 100 Deconninck, G. 69,90 Demeter, I. 122 Der, R.C. 16 Dima, S. 83 Divoux, S. 144 Dost, M. 100, 114, 125, 128 Doyle, B.L. 85 Duggan, J.L. 36, 38, 72, 87, 126 Dutkiewicz, V. 66

Eichler, E. 42 E1-Ashry, F.M. 150, 155, 158 E1lsworth, L.D. 40, 48, 65 Engelmann, C. 105 Eschbach, H.L. 112, 131, 143

Fahlenius, A. 27,44
Feldman, L.C. 39
Ferreira, G.P. 98,106
Filatov, V.I. 96
Folkmann, F. 59
Fortner, R.J. 16
Foster, J.S. 146
Francois, P.E. 77,86
Freire, F.L., Jr. 142,147
Fujimoto, F. 71,116
Furuta, T. 21

Gardner,R.K. 67 Geissel,H. 146 Geretschlager,M. 103,118,149 Gil,F.B. 98

6.3. Author index for the data base references in Sec. 6.2 -- Continued

Kobzev, A.P. 161 Gilboy, W.B. 112, 131 Glowacka, L. 150, 155, 158, 159 Kolatay, E. 80 Goclowski, M. 139, 145, 150, 154, 158 Komaki, K. 116 Gonsior, B. 144 Komarek, P. 14, 15 Gray, T.J. 53,61,63,67 Kretschmer, W. 159 Kruglova, I.M. 73 Kugel, H.W. 37,81 Hachiya, Y. 75 Kuwako, A. 117, 136 Hahn, R.L. 42 Hanser, F.A. 19 Laegsgaard, E. 39,93,113,130 Hansteen, J.M. 3 Harakeh, M.N. 140 Land, D.J. 132, 137, 160 Hardt, T.L. 49 Langenberg, A. 50,82 Lapicki, G. 120, 157 Harrison, K.G. 46 Hart, R.R. 18 Lark, N.L. 8 Hink, W. 51, 119 Larson, H. 52 Hock, G. 80 Laubert, R. 12, 17, 45, 97, 120 Lear, R.D. 53,78 Hogedal, F. 113 Holzer, T.E. 10 Lennard, W.N. 68, 110, 146 Hopkins, A.G. 86 Lewis, C.W. 24,31 Hopkins, F. 64,66 Lewis, H.W. 1,5 Hoppenau, S. 125, 128 Li, J.H. 161 Hornshoj, P. 124, 139, 141, 145 Liebert, R.B. 52 Hsu, C.N. 56 Lin, J. 38 Longree, M. 90 Ilkhamov, R.A. 161 Lopes, J.S. 98, 106, 115, 121, 129, 133 Lucas, G.J. 10 Inouye, T. 23 Ishii, K. 56,60,75,91,117,136 Ludemann, C.A. 42 Ludwig, E.J. 20 Jacobs, W.W. 85 Lund, M. 93, 130 Jarvis, O.N. 30 Luontama, M. 107 Jaskola, M. 124, 139, 145, 150, 154, 155, 158, 159 Macdonald, J.R. 40, 48, 65 Jauho, P. 27 Jesus, A.P. 98, 106, 115, 121, 129, 133 Magno, C. 111 Johansson, T.B. 55 Makino, I. 25, 28 Jopson, R.C. 7 Malanify, J.J. 47 Joyce, J.M. 20,81,85 Mamikonyan, S.V. 96 Mann, R. 99 Kaji, H. 56,60 Mark, H. 7 Kamada, H. 35 Martinsson, B.G. 156 Kamei, H. 23 McDaniel, F.D. 67, 72, 87, 126, 157 Kamiya, M. 91, 117, 136 McEver, W.S. 20 Kantele, J. 107 McKay, J.S.C. 104 Karlowicz, R.R. 54,62 McKnight, R.H. 43,54,62 Karp, J. 64 Merzbacher, E. 1,5 Kavanagh, T.M. 16 Messelt, S. 3,6 Kawatsura, K. 71,92,116 Milazzo, M. 76, 111, 123, 138 Miljanic, D. 52 Khan, J.M. 9, 11, 13, 16, 18 Khan, M.R. 77,86 Mitchell, I.V. 68, 112, 131, 138, 143 Khelil, N.A. 63 Mitra, S.K. 134, 135 Khusmurodov, S.H. 161 Montenegro, E.C. 142, 147, 153 Morgan, I.L. 21 Kising, J. 125 Kiss, I. 80 Morita, S. 56, 60, 75, 91, 117, 136 Munz, L. 36 Kjeldgaard, A. 59 Knaf, B. 84 Murray, J.S. 10

6.3. Author index for the data base references in Sec. 6.2 -- Continued

Musket, R.G. 34 Sakisaka, M. 25,28 Natowitz, J.B. 24,31 Saltmarsh, M.J. 42 Neacsu, V. 83 Sanders, J.T. 78 Neamu, I. 100 Sandrik, R. 161 Sartwell, B.D. 22,29 Needham, P.B., Jr. 22, 29 Scates, W.R. 41 Nettles, P.H. 41 Nikolaev, V.S. 73 Scharnagl, T. 119 Schmidt-Bocking, H. 89 Schmitt, R. 159 Ogier, W.T. 10 Olabanji, S.O. 152, 156 Schneider, D. 58 Schonfeldt, W.A. 128 Ootuka, A. 116 Osetynski, G.M. 148, 155 Schorn, P. 125 Ozawa, K. 71,116 Schule, R. 89 Schuster, W. 159 Scintei, N. 100 Pajek, M. 148, 155, 161 Sebata, M. 136 Perillo, E. 127 Sellers, B. 19 Peterson, D.M. 41 Sellin, I. 12 Petrovici, A. 83,109 Petukhov, V.P. 73 Sera, K. 91, 117 Pfuetzner, M. 145, 154, 155, 158, 159 Sergeev, V.A. 73 Shafroth, S.M. 20, 32, 41, 85 Phillips, D. 110, 146 Shah, M. 30 Phillips, G.C. 52 Shima, K. 25, 28, 101, 102 Pizzi, C. 111 Shiokawa, T. 56,60 Ploskonka, J. 148 Poncet, M. 105 Sigaud, G.M. 147, 153 Popescu, I. 83, 109 Simmons, B.E. 1 Simons, D.G. 132, 137, 160 Porro, F. 111 Singh, B. 4 Potter, D.L. 9,11 Smith, H.P., Jr. 18,33 Presser, G. 84 Soares, C.G. 78 Price, J.L., Jr. 160 Spadaccini, G. 127 Protop, C. 100 Spaulding, J.D. 36 Raith, B. 144 Stahler, J. 84 Steibing, K.E. 89 Ramos, S.C. 106, 115 Stockli, M. 94 Ramsay, W.D. 104 Randall, R.R. 74 Stoller, C. 94 Ren, C. 151 Stolterfoht, N. 58 Reuter, F.W., III 18,33 Sujkowski, Z. 140 Rhodes, J.R. 21 Suter, M. 94 Swift, C.D. 7 Riccobono, G. 76, 111, 123 Rice, R.K. 126 Szerypo, J. 124, 139, 145, 150, 154, 155, 158, 159 Richard, P. 21 Szokefalvi-Nagy, Z. 122 Ricz,S. 80 Tamura, T. 35 Risley, J.S. 58 Ritter, R.C. 43 Tang, J. 151 Tawara, H. 46, 56, 60, 75, 91 Rohl, S. 100, 125, 128 Terasawa, M. 23, 26, 35, 71, 116 Romanovsky, E.R. 73 Rosato, E. 127 Thornton, S.T. 43,54,62 Rota, A. 111, 123 Tonuma, T. 136 Rowe, J.R. 87 Trautmann, D. 158, 159 Roy, A. 134 Trivia, G. 138

Tserruya, I. 89

Rudolph, W. 99

6.3. Author index for the data base references in Sec. 6.2 -- Continued

Umbarger, C.J. 47

Valkovic, V. 52 Van der Woude, A. 42 Van Eck, J. 50,82 Van Rinsvelt, H.A. 78 Vigilante, M. 127

Walls, J. 79
Waltner, A.W. 32,41
Watson, R.L. 24,31,49
Weber, K.H. 88
Wheeler, R.M. 57
Whitehead, C. 30
Whittemore, A.R. 64,66
Wieman, H. 58
Wilk, S. 69

Wilson, H.H. 19 Wilson, S.R. 87 Winters, L.M. 40,48 Wolfli, W. 94 Worley, R.D. 11

Xu, H. 151

Yang, F. 151

Zabel, T. 52 Zander, A.R. 57,79,108 Zekl, H. 89 Zelazny, Z. 124,139,141,145,150,154,155,158 Zemlo, L. 124,145 Zoran, V. 100 Zylicz, J. 107,145